Fysiikka
Wikipedia
Fysiikka | |
Alkuräjähdysteorian mukaan maailmankaikkeus syntyi hyvin tiheästä ja kuumasta pisteestä. Sen jälkeen avaruus on jatkuvasti laajentunut. | |
Lähitieteet | Matematiikka, Kemia Tähtitiede, Maantiede Biologia, Lääketiede |
Osa-alueet | Mekaniikka, Lämpöoppi Sähköoppi, Optiikka Akustiikka, Astrofysiikka Hiukkasfysiikka, Atomifysiikka Tiiviin aineen fysiikka Ydinfysiikka |
Pääteoriat | Klassinen mekaniikka Suhteellisuusteoria Kvanttimekaniikka |
Kuuluisimmat tieteilijät |
Aristoteles, Galileo Galilei Isaac Newton, James Maxwell Max Planck, Albert Einstein Richard Feynman, Stephen Hawking |
Fysiikka (muinaiskreikaksi φύσις, fysis eli luonto) on ainetta, energiaa ja perusluonteisia luonnonlakeja tutkiva tiede[1]. Fysiikka pyrkii löytämään luonnosta lainalaisuuksia, joita voidaan kuvata matemaattisesti ja koetella kokeellisesti.[2] Fysiikka on luonnontiede, joka tutkii kaikkeutta käsitellen aineen, energian, avaruuden ja ajan käyttäytymistä, perusvuorovaikutuksia ja näiden muodostamia kokonaisuuksia. Tämän vuoksi fysiikkaa voidaan pitää perustavanlaatuisena tieteenä, johon muun muassa kemian, maatieteiden, biologian ja ihmistieteiden ”ydintietämys” pohjautuu.[2] Fysiikan tutkijoita nimitetään fyysikoiksi.
Fysiikka on kokeellinen ja eksakti luonnontiede.[3] Kokeellisuus eli empiirisyys tarkoittaa sitä, että luonnonilmiöitä koskevat havainnot ja mittaukset ovat kaiken fysikaalisen tiedon pohja. Fysikaalinen tieto on aina kokeellisesti koeteltua. Eksaktisuus merkitsee, että fysiikan tulokset pyritään ilmaisemaan matemaattisessa muodossa ilmiön havaittuja säännönmukaisuuksia esittävinä lakeina, joiden avulla voidaan tehdä ilmiötä koskevia kvantitatiivisia ennusteita.[3]
[muokkaa] Fysiikan historia
-
Pääartikkeli: Fysiikan historia
[muokkaa] Antiikin Kreikka
Ajan hetkeä tai paikkaa, milloin ja missä fysiikka olisi syntynyt on mahdotonta selvittää tai määrittää. Varhaisimmat löydökset fysiikan tutkimuksesta ajoittuu vuosisataan 2400 eaa. ja Harappan sivilisaatioon. Tältä sivilisaatiolta on jäänyt merkkejä 10-järjestelmään pohjautuvasta mitta-asteikosta.[4] Toisaalta on löydetty myös todisteita siitä, että neanderthalin ja cro-magnonin ihminen olisivat tehneet tähtitieteellisiä havaintoja jo 30 000 vuotta sitten.[5]
Länsimainen fysiikan ja tieteen synty ajoittuu antiikin Kreikkaan. Leukippos ja Demokritos synnyttivät ajatuksen aineen rakenteesta.[6] Demokritoksen mukaan aine koostui pienistä hiukkasista, joita ei voi enää jakaa osiin. Hiukkasen nimi on atomos eli atomi.[7] Demokritos kannatti ajatusta, jonka mukaan maailmankaikkeus on muuttumaton ja ollut aina olemassa.[8] Demokritoksen jälkeen syntyi filosofinen koulukunta nimeltä epikurolaisuus. Epikurolaisuus otti vaikutteita Demokritoksen ajatuksesta aineen rakenteesta ja painotti jumalten neutraalia suhtautumista ihmisten asuttamaan maailmaan. Epikurolaisuuden mukaan jumalat eivät voi vaikuttaa millään tavalla maailmankaikkeuden toimintaan.[9]
Aristoteleen työtä fysiikan ja tieteen parissa voidaan pitää erinomaisena, sillä hänen oppejaan käytettiin vielä 1600-luvulle asti.[10] Aristoteleen mielestä kaikella pitää olla luonnollinen syy. Hänen ajattelemansa fysiikka sisälsi myös luonnon filosofian. Aristoteles tutki paljon maailmankaikkeuden toimintaan, muotoon ja rakenteeseen liittyviä asioita. Hän kuvasi Empedokleen keksimille neljälle alkuaineelle niiden peruslaadut. Tuolloin kuvitellut alkuaineet olivat tuli, vesi, maa ja ilma.[11] Aristoteleen mukaan maailmankaikkeus on aina ollut olemassa, eikä sillä ole varsinaista syntyhetkeä. Hänen mukaansa, jos maailmankaikkeus olisi joskus syntynyt, pitäisi sen joskus myös tuhoutua. Tästä hän päätteli maailmankaikkeuden olevan ikuinen. Aristoteles kirjoitti myös teoksen Fysiikka, jossa hän selvittää kaikkeuden syvintä olemusta ja rakennetta sekä pohtii aikaan liittyviä asioita.[12]
Kreikkalainen filosofi Arkhimedes on tunnetuimpia antiikin tiedemiehiä Aristoteleen ohella. Hänet tunnetaan erityisesti matemaatikkona, mutta Arkhimedes oli myös taitava fyysikko. Kerrotaan, että hän keksi nimeään kantavan nesteen nosteeseen liittyvän lakinsa ollessaan kylvyssä. Arkhimedes suunnitteli myös useita sotakoneita, kuten roomalaisten laivojen purjeita polttaneen linssin ja Arkhimedeen ruuvin.
[muokkaa] Tieteen vallankumous
Kreikkalainen kirjallisuus ja kulttuuri tuhoutui lähes täysin, kun arabit polttivat Aleksandrian kirjaston ja Rooman valtakunta miehitti Kreikan. Tieteen ja fysiikan kehitys keskeytyi täydellisesti Euroopassa tuhannen vuoden ajaksi. Arabit elivät eristyksissä eurooppalaisista ja he keskittyivät kauppaan. Arabien ansiosta paljon tietoa on säilynyt antiikin Kreikasta. Arabeille suunnistaminen ja laskeminen olivat tärkeitä, joten tieteet olivat olennainen osa arabiyhteiskuntaa. 800-luvulla arabien tiedekeskukseksi kehittyi Bagdad, jonne perustettiin Viisauden taloksi kutsuttu korkeakoulu.[13] Korkeakoulussa käännettiin kreikkalaisten tekstejä arabiaksi ja harjoitettiin omaa tutkimusta. Eurooppalaiset ja arabit olivat keskenään hyvissä väleissä ennen ristiretkiä ja näin alun perin Kreikassa syntynyt tiede alkoi levitä uudelleen Eurooppaan Arabi-imperiumin laajetessa Pohjois-Afrikkaan ja Espanjaan.
Katolinen kirkko oli estänyt tieteen kehityksen 1600-luvulle asti, koska se oli kirkon oppien vastaista ja saattoi uhata kirkon asemaa. Vielä 1600-luvulle asti tiede oli peräisin Raamatusta tai Aristoteleen mukaisia oppeja. Ennen valistusaikaa oletettiin kaiken tottelevan Aristoteleen oppeja. Edes Auringonpilkkuja ei hyväksytty olevaksi olemassa, vaikka niistä oli suorat kokeelliset havainnot, sillä perusteella, ettei Auringon pilkuista ollut mainintaa Aristoteleen teoksissa.[14]
Loppujen lopuksi kirkon vallan rapistuminen aloitti tieteellisen vallankumouksen, jonka katsotaan alkaneeksi vuonna 1543, jolloin Nikolaus Kopernikus julkaisi De revolutionibus orbium coelestium -teoksen. Kopernikus kuoli pian julkaisemisen jälkeen. Katolisen kirkon vallan murenemiseen vaikutti kirjapainon kehittäminen ja kirkon sisäiset ongelmat.
Yhtenä suurimpana fyysikkona pidetty Galileo Galilei vastusti näyttävästi kirkon oppeja. Galilei loi pohjan klassiselle fysiikalle ja häntä kutsutaan usein klassisen fysiikan isäksi. Galilei teki paljon liikkeeseen liittyviä tutkimuksia. Yksi kuuluisimmista kokeista on Galilein pudottamat eri painoiset painot Pisan kaltevasta tornista. Galilei huomasi mittaustensa ja Aristoteleen oppien välillä ristiriidan: kappaleiden putoamisaika ei riipu kappaleiden massasta. Galilei kehitti myös nykyisen tieteellisen menetelmän, jonka mukaan teorian ja kokeiden pitää olla sopusoinnussa. Muita Galilein aikalaisia olivat Christiaan Huygens, Johannes Kepler ja Blaise Pascal. Samalla vuosisadalla termodynamiikka alkoi kehittyä nopeasti. Termodynamiikan isänä voidaan pitää Otto von Guerickea, joka kehitti 1650-luvulla ensimmäisen tyhjiöpumpun.[15] Tosin häntä aiemmin Galilei oli esitellyt lämpömittarin toimintaperiaatteen sekä G. D. Fahrenheit ja Anders Celsius olivat esitelleet omat lämpötila-asteikkonsa.[16] Termodynamiikkaa kehittivät von Guericken jälkeen muun muassa Thomas Young ja Robert Boyle.
Tieteen vallankumous kulminoitui vuoteen 1687, jolloin Isaac Newton julkaisi teoksensa Philosophiae Naturalis Principia Mathematica. Teoksessaan Newton esittelee liikelakinsa, johon klassinen mekaniikka perustuu. Principiassaan Newton esittelee painovoimalakinsa sekä muutaman teorian koskien virtausdynamiikkaa.
Vuonna 1738 Daniel Bernoulli julkaisi teoksensa Hydrodynamica, joka käsitteli statiikan teoriaa ja nesteiden liikkeitä. Samalla teos loi pohjan kineettiselle kaasuteorialle. Kuusikymmentä vuotta myöhemmin Benjamin Thompson havainnollisti kuinka työ muuttuu energiaksi ja vuonna 1847 James Joule esitteli lain mekaanisen energian muuntumisesta lämpöenergiaksi. Tätä aiemmin klassista mekaniikkaa muokkasivat ja laajensivat erityisesti Leonhard Euler, Joseph-Louis Lagrange, William Rowan Hamilton ja monet muut, jotka tekivät uusia löytöjä teoreettisen fysiikan alalla.
Fysiikan suurimpiin tutkimusalueisiin kuului 1800-luvulla sähkö. Robert Boylen, Stephen Grayn ja Benjamin Franklinin 1600- ja 1700-luvulla tehdyt tutkimukset koskien sähköä antoivat edellytykset sähkön tutkimiselle. Nämä tutkimukset johtivat sähkövirran ja jännitteen havaitsemiseen. Vuonna 1808 John Dalton esitti epäsuorasti mallin, joka viittasi atomien olemassaoloon.[17] Englantilainen fyysikko Michael Faraday esitteli näkemystä magnetismin ja sähkön yhdistämiselle. Tätä hän havainnollisti liikuttelemalla magneettia johtimen ympärillä siten, että johtimeen indusoitui jännite.[18]
Skotlantilainen James Clerk Maxwell esitteli 1800-luvulla yhtälönsä, joissa hän kuvaa sähkö- ja magneettikenttiä sekä niiden vuorovaikutusta. 1800-luvun lopulla saksalainen Wilhelm Röntgen löysi röntgensäteilyn ja sai havainnostaan ensimmäisen Nobelin fysiikanpalkinnon.
Ihmisen usko fysiikkaan ja muihin tieteisiin kohosi nopeasti huippuunsa. 1800-luvulla tehdyt valtavat löydöt saivat ihmiset uskomaan tieteeseen ja siihen, että tiede ratkoo kaikki ihmisten ongelmat tulevaisuudessa.
[muokkaa] Moderni fysiikka
1900-luvun alussa huomattiin, ettei silloin tunnettu fysiikka kuvaa tarpeeksi tarkasti tunnettua luontoa. Vuonna 1900 Max Planck kehitti Gustav Kirchhoffin ajatusten ja mustan kappaleen säteilyä koskevien tutkimustulosten pohjalta idean, jonka mukaan säteilyenergia koostuu pienistä yksiköistä, energiakvanteista.[19] Yksittäisen kvantin energia saadaan kertomalla säteilyn taajuus eräällä yleisellä luonnonvakiolla, Planckin vakiolla. Viisi vuotta myöhemmin Albert Einstein julkaisi tutkimuksen, jossa hän Planckin ideaa apuna käyttäen selitti valosähköisen ilmiön. Einstein julkaisi samana vuonna myös suppean suhteellisuusteorian ja selitti Brownin liikkeen, jota oli pyritty selittämään useaan otteeseen ennen Einsteinia. Albert Einstein oli merkittävä hahmo modernissa fysiikassa; päätöidensä lisäksi hän oli mukana kehittämässä kvanttimekaniikkaa.[20]
Vaikka fysiikalla on usean tuhannen vuoden historia, fyysikot eivät olleet 1900-luvun alussa vieläkään yhteisymmärryksessä aineen rakenteesta. Tuolloin vallitsevana mielipiteenä oli samankaltainen kuin Demokritoksen aiemmin esitetty idea. Fyysikot totesivat, että aine koostuu atomeista. Ennen 1900-lukua J. J. Thomson suunnitteli kokeen, joka vaikutti käsitykseen atomien rakenteesta. Kokeessa havaittiin, että katodisäteet koostuivat negatiivisesti varautuneista hiukkasista, elektroneista.[21] Yksi atomin rakenneosista oli löytynyt. Thomson sai havainnostaan Nobelin fysiikanpalkinnon ja myöhemmin hänen poikansa sai Nobelin fysiikanpalkinnon elektronien aaltoluonteen löytämisestä.[22]
Modernin fysiikan ja klassisen fysiikan taitteessa Pierre Curie ja Marie Curie havaitsivat, että jotkin aineet olivat radioaktiivisia.[23] Henri Becquerel löysi samaisen ilmiön tosin aiemmin, muttei ollut varma mitä oli löytänyt. Marie Curie oli fysiikan ja kemian harvoja merkittäviä naishahmoja. Curien löytöjen pohjalta syntyi uusi fysiikan haara, ydinfysiikka. Aivan alkuaikoina röntgensäteilyn ja radioaktiivissa prosesseissa syntyneen säteilyn vaarallisuutta ei tiedostettu, ja monet tutkijat altistuivat vaaralliselle säteilylle liiaksi. Myös Marie Curie työskenteli radioaktiivisten aineiden kanssa ilman kunnollisia suojavarusteita. Hän kuoli leukemiaan 1934.[24]
Uusiseelantilainen fyysikko Ernest Rutherford löysi vuonna 1911 atomin ytimen pommittaessaan alfa-hiukkasia ohutta kultalevyä kohti. Rutherford totesi useimpien hiukkasten menevän kultalevystä läpi, mutta yllätyksekseen hän havaitsi, että osa hiukkasista sirosi takaisin päin. Tästä hän päätteli, että suurin osa atomin massasta sijoittuu hyvin pieneen ytimeen, jossa on positiivisesti varautuneita hiukkasia, protoneja.[25] Vuonna 1932 James Chadwick löysi neutronit, jotka osoittautuivat myös ytimen osasiksi.
Tanskalainen Niels Bohr oli yksi suurimmista kvanttiteorian kehittäjistä ja puolestapuhujista. Bohr esitteli vuonna 1913 mallin atomin rakenteesta. Bohrin mallin mukaan elektronit sijoittuvat ytimen ympärille radoille, joiden energia kasvaa sitä suuremmaksi, mitä kauemmaksi ytimestä mennään. Malli ei kuitenkaan vastannut todellisuutta kovinkaan hyvin, ja myöhemmin malli korvautui kvanttimekaanisella atomimallilla, jonka mukaan elektronit eivät sijaitse tietyssä avaruuden pisteessä vaan ne sijaitsevat tietyllä todennäköisyydellä tietyssä pisteessä. Kun kvanttiteorian mukaan valolla on sekä aalto- että hiukkasluonne, sai Louis de Broglie vuonna 1924 aiheen olettaa, että samoin on elektronien ja muidenkin alkeishiukkasten laita. Oletus osoittautui oikeaksi ja on kvanttimekaniikan perustana. Kvanttimekaniikan suurimpia kehittäjiä olivat muun muassa Erwin Schrödinger, Paul Dirac ja Werner Heisenberg.
1900-luvun puolivälissä kvanttimekaniikan käsitteitä kehitettiin edelleen ja syntyi niin sanottu kvanttikenttäteoria. Kvanttikenttäteorian alullepanijoita olivat Richard Feynman, Julian Schwinger, Sin-Itiro Tomonaga ja Freeman Dyson. Edellä mainitut henkilöt laittoivat alulle kvanttisähködynamiikan, joka kuvaa sähköisesti varattujen hiukkasten vuorovaikutustapahtumia ja selitti Lambin siirtymän. Kvanttikenttäteoria tarjosi viitekehyksen hiukkasfysiikan kehittymiselle.
Ydinfysiikan ja muun fysiikan kehityksellä oli oma merkityksensä toisessa maailmansodassa. Monet Euroopasta Yhdysvaltoihin muuttaneet fyysikot sekä Yhdysvalloissa asuvat fyysikot liittyivät Manhattan-projektiin ja olivat mukana kehittämässä atomipommia. Yhdysvallat pudotti kaksi atomipommia Japaniin vuonna 1945. Tämä sai Japanin antautumaan ja toinen maailmansota loppui. Nähtyään aiheutuneen tuhon monet Manhattan-projektiin osallistuneet fyysikot katuivat osallisuuttaan kärsimysnäytelmään ja sodan jälkeen vuonna 1955 useat kuuluisat fyysikot, Einstein mukaan luettuna, allekirjoittivat Russellin–Einsteinin manifestin, joka varoitti maailman johtajia ydinpommien vaaroista.
Chen Ning Yang ja Tsung-Dao Lee huomasivat tutkimuksissaan 1950-luvulla epäsymmetriaa hiukkasten hajoamisessa. Tutkimukset johtivat seuraavien vuosikymmenien aikana ydinvoimien tutkimiseen ja niiden parempaan ymmärtämiseen. Tämä johti standardimallin luomiseen 1970-luvulla.[26]
Yleisen suhteellisuusteorian ja kvanttimekaniikan ristiriitaisuus johti säieteorian ja supersäieteorian syntymiseen. Supersäieteoria on yksi lupaavimmista teorioista yhdistää gravitaatio ja muut perusvuorovaikutukset.
Yhdistyneet kansakunnat julisti vuoden 2005 fysiikan vuodeksi.[27] Tämä oli kunnianosoitus Albert Einsteinin sataa vuotta aikaisemmalle uskomattomalle vuodelle 1905 (lat. Annus mirabilis), jolloin hän julkaisi samana vuonna useita modernin fysiikan kannalta merkittäviä tutkimuksia.
[muokkaa] Tulevaisuus
-
Pääartikkeli: Ratkaisemattomat fysiikan ongelmat
Fysiikassa on monia toistaiseksi selvittämättömiä ongelmia. Yhdeksi suurimmaksi ongelmaksi on osoittautunut gravitaation selittäminen. Gravitaation uskotaan aiheutuvan gravitoni-hiukkasesta, mutta kokeellisesti hiukkasta ei ole vielä pystytty havaitsemaan. Fysiikan tutkimuksen kannalta yhdeksi mielenkiintoisimmaksi odotuksen aiheeksi on noussut suuri hadronitörmäytin eli Large Hadron Collider, jonka toivotaan antavan vastaus muun muassa sille, mitä massa pohjimmiltaan on.
[muokkaa] Fysiikan osa-alueet
-
Pääartikkeli: Luettelo fysiikan osa-alueista
Fysiikkaa jaotellaan tavallisimmin sen historiallisen kehityksen pohjalta erinäisiin osin toisiinsa limittyviin tutkimusaloihin. Tätä jaottelua käytetään muun muassa fysiikan opetuksessa. Osa-alueita muodostuu myös tietyn mittakaavan tai menetelmän perusteella, kuten laskennallinen fysiikka tai astrofysiikka. Itse fysikaaliseen tietämykseen ja siten luontoon pohjautuvaa jaottelua ei ole.
[muokkaa] Historiallinen jaottelu
Fysiikan perusteoriat voidaan karkeasti jakaa klassiseen ja moderniin fysiikkaan. Näiden termien määritelmät vaihtelevat. Rajatuimman näkemyksen mukaan modernia on vain kvanttifysiikka ja sille läheiset aiheet. Yleisesti kuitenkin myös suhteellisuusteoria lasketaan moderniksi fysiikaksi. Laajemman niin sanotun historiallisen näkemyksen mukaan modernia fysiikkaa on kaikki 1900- ja 2000- luvulla tehty fysiikka.
Yleensä klassisessa fysiikassa keskitytään ihmisen mittaskaalan ilmiöihin, modernissa joko paljon pienempiin, paljon suurempiin tai vastaavasti paljon kylmempiin tai paljon kuumempiin eli energeettisempiin ilmiöihin. Monet tärkeät klassiset ilmiöt, esimerkiksi gravitaatio eli painovoima, tai yhteyttämisen fysikaaliset perusteet pystytään selittämään täsmällisesti vain modernin fysiikan avulla. Itse asiassa minkä tahansa ilmiön täsmälliseen selittämiseen tarvitaan modernia fysiikkaa, sillä klassinen fysiikka on moderniin fysiikkaan nähden niin sanottu efektiivinen, "keskiarvoistettu" malli. Yleisen suhteellisuusteorian osalta klassisten teorioiden toimivuus on helppo ymmärtää: se seuraa Lorentz-muunnoksen merkityksettömyydestä pienillä nopeuksilla, kun nimittäjä on miltei yksi. Kvanttifysiikan osalta tilanne on monimutkaisempi. Klassisten lakien nouseminen kvanttifysiikasta on dekoherenssin ansiota.
[muokkaa] Klassinen fysiikka
-
Pääartikkelit: Klassinen fysiikka, klassinen mekaniikka, sähkömagnetismi, termodynamiikka, optiikka ja akustiikka
[muokkaa] Klassinen mekaniikka
Klassinen mekaniikka on pitkälti Isaac Newtonin muotoilema ja joskus myös Newtonin mekaniikaksi kutsuttu ala, joka kuvaa makroskooppisia kappaleita ja niiden liikkeitä. Klassisessa mekaniikassa kuvataan kappaleiden välisiä vuorovaikutuksia, jotka perustuvat kappaleiden massaan, sekä näiden vuorovaikutusten aikaansaamia liikkeitä. Nykytietämyksen mukaan klassinen mekaniikka ei pidä paikkaansa suurilla nopeuksilla, jotka lähentelevät valonnopeutta tai pienen kokoluokan, atomitason, ilmiöille.[28] Se kuitenkin kuvaa hyvin tarkasti tavanomaisia ilmiöitä.
Klassisen mekaniikan liikettä kuvaavat koordinaatistojärjestelmät voidaan jakaa karkeasti kahtia inertiaalikoordinaatistoon ja epäinertiaalikoordinaatistoon. Inertiaalikoordinaatisto on koordinaatisto, jossa Newtonin lait ovat voimassa. Newtonin ensimmäisen lain mukaan kappale on levossa tai tasaisessa liikkeessä ellei siihen vaikuta ulkoisia voimia. Inertiaalikoordinaatisto on ideaalinen koordinaatisto, jota ei voi käytännössä olla olemassa. Kahdessa toistensa suhteen liikkuvassa inertiaalikoordinaatistossa on mahdotonta sanoa kumpi koordinaatisto on liikkeessä ja kumpi levossa eli kaikki inertiaalikoordinaatistot ovat keskenään samanarvoisia. Kahden inertiaalikoordinaatiston välinen siirtymä tehdään Galilei-muunnosta apuna käyttäen. Epäinertiaalisessakoordinaatistossa vaikuttavat Newtonin lakien mukaisten voimien lisäksi niin sanotut näennäisvoimat.
Klassinen mekaniikka voidaan jakaa kolmeen alaan, jotka tutkivat hieman eri asioita. Nämä alat ovat kinematiikka, dynamiikka ja statiikka. Kinematiikka tutkii kappaleen liikettä huomioimatta kappaleen massaa tai liikkeen aiheuttavia syitä. Liikettä kuvataan puhtaasti geometrisesta näkökulmasta. Dynamiikka tutkii liikettä liikkeen aiheuttavien voimien näkökulmasta. Peruslakeina ovat Newtonin kehittämät mekaniikan peruslait. Statiikka eli tasapaino-oppi tutkii levossa olevia kappaleita ja voimia, joilla ne vaikuttavat toisiinsa.[29]
Kaasuja ja nesteitä tutkivia mekaniikan haaroja kutsutaan omilla nimillään. Nesteitä tutkivaa mekaniikan haaraa kutsutaan hydromekaniikaksi. Tämä sisältää hydrostatiikan ja hydrodynamiikan. Kaasujen mekaniikkaa tutkiva mekaniikan ala on nimeltään aeromekaniikka. Ala sisältää aerodynamiikan ja aerostatiikan.
Klassinen mekaniikka jaetaan myös sen matemaattisen lähestymistavan mukaan omiksi haaroiksi. Näitä haaroja kutsutaan nimillä: Newtonin mekaniikka, Lagrangen mekaniikka ja Hamiltonin mekaniikka. Newtonin kehittäessään mekaniikkaansa, oli Galileo Galilein kehittämällä Galilein mekaniikalla suuri merkitys.[30]
[muokkaa] Sähkömagnetismi
Sähkömagnetismi kuvaa varautuneiden hiukkasten vuorovaikutuksia. Se pohjaa James Clerk Maxwellin yhtälöille, jotka kuvaavat varautuneiden hiukkasten ja niiden aikaansaamien kenttien välisiä vuorovaikutuksia. Sähkömagnetismi liittää magneettiset ja sähköiset ilmiöt yhteen. Sähkömagnetismi on varhaisimpia esimerkkejä fysikaalisesta yhtenäisteoriasta. Sähkömagnetismilla on historiallinen merkitys suhteellisuusteorian synnyn kannalta. Sähkö ja magnetismi sekä niiden useat sovellutukset ovat osa nyky-yhteiskunnan perustarpeista. [31]
Sähkön ja magnetismin kytkeytymistä hyödynnetään muun muassa sähkön tuotannossa. Sähkön käyttö energialähteenä perustuu muutamiin perussovellutuksiin, jotka mahdollistavat sähkön tuottamisen mekaanisesta liikkeestä generaattorilla ja muuttamisen mekaaniseksi liikkeeksi sähkömoottorilla. Yksinkertaisin magnetismin sovellutus on kuitenkin kompassi, jonka toiminta perustuu kestomagneetin suuntautumiseen Maan magneettikentässä. Magneetteja hyödynnetään sähkön tuotannon lisäksi myös useissa tiedontallennusvälineissä kuten kiintolevyissä. Toisaalta hyvin kookkaita ja voimakkaita magneetteja tarvitaan esimerkiksi hiukkasfysiikassa hiukkaskiihdyttimissä ja lääketieteessä magneettikuvauksissa. Voimakkaita magneetteja tarvitaan myös fuusioreaktoreissa plasman ohjailuun. Yksi fuusioreaktoreiden suurimmista haasteista onkin onnistua luomaan oikeanlainen magneettikenttä reaktorin sisälle.
[muokkaa] Termodynamiikka
Termodynamiikka eli lämpöoppi tarkastelee lämpöenergiaan ja lämpötilaan liittyviä luonnonilmiöitä sekä mekaanisen energian suhdetta näihin. Aineen ominaisuuksia, erityisesti nesteiden ja kaasujen, kuvataan makroskooppisilla tilanmuuttujilla. Näitä niin sanottuja tilasuureita ovat lämpötila, paine, tilavuus ja sisäenergia. Tilasuureet määritellään riippumattomiksi aineen rakenteesta, joten termodynamiikka on hyvin yleispätevä fysiikan haara.[32] Termodynamiikka tutkii erityisesti lämpöä, energiaa, lämpötilaa ja työtä. Lämpöopin hallitseminen on tärkeässä roolissa yhteiskunnassa. Eri energiantuotantotavat pohjautuvat läheisesti termodynamiikkaan. Lämmön siirtyminen on tärkeä osa termodynamiikkaa. Monet laitteet perustuvat lämmönsiirtymiseen. Lämmönsiirtymistä käytetään hyväksi muun muassa ydinvoimaloiden lauhduttimissa ja kaukolämpövoimaloissa. Yhdessä ydinfysiikan ja sähkömagnetismin kanssa alat luovat maapallon energiatalouden selkärangan.
Termodynamiikka on hyödyllinen apuväline myös muissa tieteissä. Termodynamiikan avulla voidaan selventää maantieteessä Maan litosfäärilaattojen liikkeet ja vastaavasti taas meteorologiassa tuulen synty. Sairaaloissa hyödynnetään eri instrumenttien desinfioinnissa paineen ja lämpötilan suhdetta. Suurentamalla painetta saadaan veden kiehumispistettä nostettua ja näin saadaan mahdolliset taudin aiheuttajat tuhottua. Eri tieteen alojen lisäksi lämpöoppi on hyödyllinen apuväline arkipäiväisten ilmiöiden selittämisessä.
Lämpöopin tärkeimpiin teorioihin kuuluu niin sanottu kineettinen kaasuteoria. Teoria perustuu matemaattiseen malliin kaasusta, ideaalikaasuun. Ideaalikaasun avulla voidaan havainnollistaa kaasujen käyttäytymistä tilavuuden, lämpötilan ja paineen muutoksissa. Toinen termodynamiikan ilmiöitä selittävä fysiikan ala on statistinen mekaniikka.
Yhdeksi merkittäväksi tutkimuskohteeksi on noussut myös hyvin alhaisten lämpötilojen tutkiminen. Niillä on oma merkityksensä esimerkiksi suprajohteiden tutkimuksessa. Espoossa sijaitsevan Teknillisen korkeakoulun Kylmälaboratoriossa tehtiin vuonna 2000 kylmyysennätys kun lämpötila saatiin pudotettua vain 0,000 000 000 1 kelvinasteen (100 pK) päähän absoluuttisesta nollapisteestä.[33]
[muokkaa] Optiikka
Optiikka eli valo-oppi tutkii valoa ja valon käyttäytymistä väliaineissa sekä rajapinnoissa. Optiikka ja sähkömagnetismi ovat läheisessä suhteessa toisiinsa nähden koska näkyvä valo on osa sähkömagneettisen säteilyn spektriä. Valo-opin perusperiaatteisiin kuuluu valon äärellinen nopeus, joka on tyhjiössä vakio valonnopeus. Optiikkaan kuuluu myös muiden aalto-opillisten ilmiöiden tutkiminen. Optiikka tutkii muun muassa valon taittumista, taipumista, heijastumista ja polarisaatiota.
Perinteisesti valon taittumista hyödynnetään linsseissä, joihin perustuu muun muassa mikroskooppien, silmälasien, kaukoputkien toiminta. Uudemmista sovellutuksista optiset kuidut ovat esimerkki valon kokonaisheijastumisen hyötykäytöstä. Optiset kuidut ovat uusimpia tärkeimmistä optiikan sovellutuksista; valokaapeleita käytetään hyvin paljon tiedonsiirrossa.
Tällä hetkellä optiikan osaaminen on maailman kärkiluokkaa Suomessa. Vuonna 2004 Tuorlan observatorioon tuotiin hiottavaksi maailman suurin avaruuspeili, joka on osa ESAn Herschel-satelliittia. Hiominen on erityisen tarkkaa sillä pienetkin virheet tuhoaa kalliin projektin.[34]
[muokkaa] Akustiikka
Akustiikka eli äänioppi on äänen etenemiseen, tuottamiseen ja havaitsemiseen keskittynyt fysiikan ala.[35] Ääni ja valo voidaan molemmat kuvata aaltoliikkeenä. Kuten valo, ääni voi heijastua ja taittua rajapinnoista. Toisin kuin valo, ääni tarvitsee kuitenkin edetäkseen väliaineen, sillä se on atomien ja molekyylien mekaanista liikettä.
Akustiikan oppeja käytetään tilojen äänimaailman suunnittelussa. Suurten teatteri- ja oopperanäyttämöiden suunnittelussa akustiikalla on suuri merkitys jotta näytöksen kaikki katselijat kuulisivat äänen hyvin riippumatta istumapaikasta. Suurten tilojen ongelmana on yleensä myös kaiku eli äänen heijastuminen. Kaikua voidaan vähentää erilaisten materiaalien avulla.[36]
Akustiikalla on merkitys myös kuulovaurioiden ehkäisemisessä sekä melutason mittaamisessa. Akustiikan mukaan melu on ääntä, joka on haitallista, häiritsevää tai vahingollista. Akustiikka sovelletaan myös lääketieteessä sekä rakennusvirheiden tutkimiseen. Etenkin lääketieteessä ääntä pyritään käyttämään mahdollisimman paljon, ja ionisoivan säteilyn käyttöä on pystytty vähentämään ultraäänen avulla. Ultraääntä hyödynnetään esimerkiksi sikiötutkimuksissa, nivelvaurioiden hoidossa, hammaskiven poistossa ja instrumenttien puhdistuksessa.[37]
[muokkaa] Moderni fysiikka
-
Pääartikkelit: Moderni fysiikka, erityinen suhteellisuusteoria, yleinen suhteellisuusteoria ja kvanttimekaniikka
[muokkaa] Suhteellisuusteoria
Suppea ja yleinen suhteellisuusteoria kuvaavat toistensa suhteen suurella nopeudella liikkuvien koordinaatistojen (havainnoitsijoiden) välisten havaintojen suhdetta, esimerkiksi samanaikaisuuden käsitettä. Yleinen suhteellisuusteoria myös selittää painovoiman avaruuden geometriseksi ominaisuudeksi. Suhteellisuusteoria poikkeaa klassisesta mekaniikasta hyvin paljon. Suhteellisuusteorioiden mukaan aika sekä avaruus ovat suhteellisia ja riippuvat nopeuksista. Toisin kuin klassisessa mekaniikassa, suhteellisuusteorioiden mukaan mikään koordinaatisto ei ole erityisasemassa toisiin nähden.
Suhteellisuusteoria syntyi sähkömagnetismin pohjalta.[38] James Maxwellin töiden pohjalta huomattiin ristiriita klassisen suhteellisuusperiaatteen ja Maxwellin yhtälöiden välillä. Newtonin liikeyhtälöt noudattavat Galilei-invarianssia. Galilei-invarianssissa tasaisessa liikkeessä olevan kappaleen ja levossa olevan kappaleen aika käy samaa aikaa. Hendrik Lorentz korjasi Galilei-invarianssia siten, että aika käy eri tavalla liikkeessä olevan ja levossa olevan kappaleen välillä. Tämä tunnetaan Lorentz-muunnoksena.[38]. Suhteellisuusteoria nojautuu juuri Lorentz-muunnokseen.
Erikoinen suhteellisuusteorian mukaan liikkeessä olevan kappaleen aika käy hitaammin kuin levossa olevan. Tämä tunnetaan aikadilaationa. Levossa olevan ja liikkeessä olevan kappaleen välinen aikaero on laskevissa Lorentz-muunnosta apuna käyttäen. Vastaavanlainen ilmiö on havaittavissa pituuden suhteen. Pituus pienenee suurissa nopeuksissa. Pituus pienenee vain siinä suunnassa johon liikekin suuntautuu. Pituuden pieneneminen tunnetaan pituuskontraktiona. Nämä erot ovat lähes olemattomia normaaleissa nopeuksissa, joten normaalissa elämässä ilmiöitä ei voi havaita.
Siinä missä erikoinen suhteellisuusteoria on ristiriidassa Newtonin liikelakien kanssa on yleinen suhteellisuusteoria ristiriidassa kvanttimekaniikan kanssa.
[muokkaa] Kvanttimekaniikka
Kvanttimekaniikka laajentaa klassisen fysiikan kuvausta hiukkasten ja kenttien välisestä vuorovaikutuksesta eli alueelle, jossa klassinen mekaniikka ei enää päde. Tärkeitä ominaisuuksia kvanttimekaniikassa ovat hiukkasten aallon-omaiset interferenssi-ilmiöt, vastaavasti kenttien hiukkastyyppiset ominaisuudet kuten kvantittuminen, ja samantyyppisten hiukkasten tai aaltojen lomittuminen. Näitä ominaisuuksia tavataan yleensä erityisesti alkeishiukkasilta, mutta myös hiukkasten ryhmittymät voivat käyttäytyä kvanttimekaanisesti yhtenä kollektiivisena joukkona.
Kvanttimekaniikka syntyi Max Bornin ja hänen työryhmän tutkimustuloksena, kun he yrittivät löytää syytä elektronin epäjohdonmukaiselle käyttäytymiselle.[39] Kvanttimekaniikalle on tyypillistä indeterminismi eli tarkkojen ennustusten mahdottomuus; fysikaalisten suureiden tarkkojen arvojen sijasta täytyy puhua niiden todennäköisyysjakaumasta.[39] Koko kvanttimekaniikkaa kuvaa erityisen hyvin Heisenbergin epätarkkuusperiaate, jonka mukaan kahta komplementaarista ominaisuutta (kuten paikka ja liikemäärä) ei voida yhtä aikaa mitata äärettömän tarkasti - toisen tarkka tuntemus väistämättä johtaa toisen epämääräisyyteen.
Atomin todellisen rakenteen kuvauksen pohjana käytetään kvanttimekaniikkaa. Kvanttimekaanisen atomimallin, jossa elektroneja käsitellään aaltoina eikä hiukkasina, avulla kuvataan muun muassa elektronien järjestäytyminen atomin orbitaaleille. Kvanttimekaniikka ennustaa myös niin sanotun antimaterian olemassaolon. Tämä on suora seuraus Diracin yhtälöstä. Tämä on kokeellisesti todistettu oikeaksi päätelmäksi. Kvanttimekaniikka on onnistunut selittämään kaikki muut luonnon perusvuorovaikutukset paitsi gravitaation.
Kvanttimekaniikka ja suhteellisuusteoria voivat kuulostaa järjen vastaisilta. Kvanttimekaniikka ennustaa monia asioita, joita voidaan pitää täysin järjettöminä. Esimerkiksi kvanttisuperpositio on tällainen. Kuuluisin ajatuskoe kvanttisuperpositiosta on Schrödingerin kissa, jonka mukaan kissa voi olla samaan aikaan kuollut ja elossa tai atomin ydin voi olla hajonnut tai ei-hajonnut. Tämä erottaa kvanttimekaniikan ja klassisen mekaniikan toisistaan erittäin selvästi.
Kun on kysymys kappaleista, joiden energiat ovat niin suuria, että niiden rinnalla Planckin vakio voidaan pyöristää nollaksi, kvanttimekaniikka johtaa kuitenkin samoihin tuloksiin kuin klassinen fysiikka. Samaan tapaan suhteellisuusteoria johtaa klassisen fysiikan kanssa yhtäpitäviin tuloksiin silloin, kun kaikki nopeudet ovat paljon valonnopeutta pienempiä.
[muokkaa] Tutkimuskohteen mukainen lajittelu
[muokkaa] Hiukkasfysiikka
-
Pääartikkeli: Hiukkasfysiikka
Hiukkasfysiikka tutkii aineen perimmäistä rakennetta eli alkeishiukkasia. Hiukkasfysiikan tutkimuksissa käytetään suuria hiukkaskiihdyttimiä, joiden avulla törmäytetään suurella nopeudella kulkevia hiukkasia toisiinsa. Törmäyksissä syntyy uusia hiukkasia, joiden perusteella pyritään todentamaan vallalla olevia teorioita aineen rakenteesta. Hiukkasfysiikkaa kutsutaan usein myös nimellä suurenergiafysiikka johtuen tutkittavien hiukkasten suuresta energiasta.
Hiukkasfysiikka ja kosmologia pyrkivät etsimään vastauksia perustavaa laatua oleviin kysymyksiin: mitä maailmankaikkeuden syntyhetkellä tapahtui, miten aine on syntynyt, ja miten aine käyttäytyy suurissa lämpötiloissa ja tiheyksissä (esimerkkinä alkuräjähdys ja mustat aukot)?
Teoreettisesti hiukkasfysiikka nojautuu kvanttimekaniikkaan ja suppeaan suhteellisuusteoriaan. Hiukkasfysiikan pohjana on 1970-luvulla kehitetty niin sanottu standardimalli, jonka tarkoituksena on kuvata aineen vuorovaikutuksia rakennetta. Standardimallilla on tiettyjä heikkouksia, joista johtuen teoreetikot yrittävät edelleen löytää parempaa teoriaa. Standardimalli sisältää kuitenkin kaikki muut vuorovaikutukset paitsi gravitaation.[40] CERNin uuden Large Hadron Colliderin toivotaan tuovan vastauksen muun muassa siihen, onko oletettua hiukkasten massan selittävää Higgsin bosonia olemassa.
Säieteorioista toivotaan modernin fysiikan uutta aineen rakenteen teoriaa. Sen mukaan hiukkaset koostuvat pienen pienistä värähtelevistä energiakuiduista, säikeistä. Säieteoriat ovat ehdokkaita niin sanotuksi suureksi yhtenäisteoriaksi, joka yhdistäisi kaikki vuorovaikutukset. Teoriat ovat kuitenkin hyvin kiistanalaisia, sillä sitä on vaikea osoittaa oikeaksi tai vääräksi nykyisillä mittausmenetelmillä.
[muokkaa] Ydinfysiikka
-
Pääartikkeli: Ydinfysiikka
Ydinfysiikka tutkii atomin ydintä ja ytimien hajoamista. Ydinfysiikassa, kuten hiukkasfysiikassa, ydintä tutkitaan hiukkaskiihdyttimien avulla. Ydinfysiikassa käytetyt kiihdyttimet ovat useimmiten paljon pienempiä. Keskeisiä tutkimuskohteita ydinfysiikassa on radioaktiivisuus.
Ydinfysiikka käytännön elämän tärkeimmistä fysiikan haaroista. Ydinfysiikan tutkimukset mullistivat koko energiatalouden ja energiantuotannon; energiaa pystyttiin tuottamaan fission avulla aiempaa enemmän. Ennen ydinfysiikan valjastamista yhteiskunnalliseen, rauhanomaiseen, käyttöön sitä hyödynnettiin sotatoimissa. Ensimmäinen sotilaskäytössä ollut atomipommi pudotettiin 6. elokuuta 1945 Hiroshimaan ja kolmea päivää myöhemmin Nagasakiin. Ydinfysiikalla on kuitenkin paljon rauhanomaisia sovellutuksia lääketieteessä ja muilla aloilla.
Ydinfysiikan odotetaan mullistavan uudelleen energiateollisuuden, kun ensimmäiset hallitut fuusioreaktorit saadaan kaupalliseen käyttöön. Nykyisessä fissioreaktiossa tuotetaan energiaan ketjureaktion avulla, jossa raskaita atomin ytimiä halkaistaan pienemmiksi. Fuusion voidaan ajatella olevan täysin päinvastainen reaktio, sillä reaktiossa yhdistetään kaksi kevyttä atomin ydintä yhteen. Fuusio tullaan toteuttamaan vedyn ja vedyn isotooppien avulla. Toistaiseksi ongelmana on saada fuusioreaktio tuottamaan energiaa enemmän kuin se kuluttaa. Kaupallisten fuusioreaktoreita ei odoteta ennen vuotta 2050, mutta fossiilisten polttoaineiden väheneminen saattaa nopeuttaa fuusioreaktoreiden kehitystyötä.
[muokkaa] Atomifysiikka
-
Pääartikkeli: Atomifysiikka
Atomifysiikka ja molekyylifysiikka tutkivat atomin kokoluokan ilmiöitä. Tähän kokoluokkaan sijoittuu myös kemia. Hiukkasfysiikassa tutkitaan atomin rakenteen pienimpiä osasia, kun taas atomifysiikassa tyydytään tutkimaan atomia eristäytyneenä yksikkönä. Atomifysiikka yhdistettään usein myös ydinfysiikkaan. Atomifysiikassa on kuitenkin kyse atomin, elektronit ja ydin yhdessä, tutkimisesta kun taas ydinfysiikassa ollaan kiinnostuneita vain ja ainoastaan atomin ytimestä.
Molekyylifysiikka tutkii molekyylien ja atomien välisten sidosten fysikaalisia ominaisuuksia. Molekyylifysiikka on luonut käsitteen molekyyliorbitaaleista, joka kuvaa atomien orbitaalien yhdistymistä ja kerto kovalenttisten sidosten syntytavan.
[muokkaa] Tiiviin aineen fysiikka
-
Pääartikkeli: Tiiviin aineen fysiikka
Tiiviin aineen fysiikka tai kondensoituneen aineen fysiikka tutkii aineen makroskooppisia ilmiöitä aineen rakenneosasten tiivistyttyä yhteen olomuotoon. Aiemmin fysiikan haara tunnettiin nimellä kiinteän olomuodon fysiikka, mutta nimitys tiiviin aineen fysiikasta vakiintui kun huomattiin vastaavanlaisten ilmiöiden tapahtuvan nesteillä. Tiiviin aineen fysiikka on fysiikan alan suurin tutkimusalue. Kvanttimekaniikka on myös tiiviin aineen fysiikan teoreettinen työkalu.
Olennaisena osana tiiviin aineen fysiikkaa on hyvin matalissa lämpötiloissa havaitut ilmiöt, kuten suprajohtavuus, supranesteytyminen ja Bosen–Einsteinin kondensaatti. Suurin osa alan teorioista liittyy johtavuuteen ja magnetismiin. Tiiviin aineen fysiikan tutkimus on vaikuttanut moniin muihin fysiikan aloihin, esimerkiksi materiaalifysiikkaan, nanoteknologiaan, tekniikkaan ja lisäksi myös kemiaan.
Ehkä tärkeimpiä keksintöjä tiiviin aineen fysiikan alalla on vuonna 1948 keksitty transistori. Transistori on vaikuttanut merkittävästi koko maailman elektronisiin laitteisiin. Esimerkiksi tietokoneen nykyisen kaltainen toiminta olisi täysin mahdotonta ilman transistoria. Toinen merkittävä löytö oli intialaisen Satyendra Nath Bosen ja Albert Einsteinin ennustama Bosen-Einsteinin kondensaatti, joka löydettiin 90 vuotta myöhemmin.
Kvanttimekaniikan kehittyminen 1920-luvun lopussa on auttanut merkittävästi koko tiiviin aineen fysiikan kehittymisessä. Monien ilmiöiden selittäminen ilman kvanttimekaniikka olisi täysin mahdotonta.
[muokkaa] Astrofysiikka
-
Pääartikkeli: Astrofysiikka
Astrofysiikka eli avaruusfysiikka on tähtitieteen haara, joka tutkii avaruuden ilmiöitä, joita on mahdollista kuvata ainakin matemaattisesti.[41] Tutkimustyö kohdistuu eniten tähtiin sekä galakseihin ja niiden fysikaalisiin ilmiöihin. Tämän takia tutkimuksissa hyödyllinen fysiikan ala on plasmafysiikka. Astrofysiikka on olennainen osa maailmankaikkeuden tutkimista ja sen tutkimustulokset ovat hyvin tärkeitä monille muille fysiikan ja tähtitieteen haaroille. Olennainen osa avaruusfysiikan tutkimuksesta kohdistuu Aurinkoon ja sen aiheuttamiin ilmiöihin Maassa ja lähiavaruudessa.[42] Suomessa avaruusfysiikkaa tutkiva laitos on Ilmatieteen laitos.
Astrofysiikan tutkimuksen tärkeimpiin teorioihin kuuluu yleinen suhteellisuusteoria, jonka avulla on ennustettu useita ilmiöitä ja selittää uusia aiemmin mahdottomiksi luultuja ilmiöitä. Ilmiöistä saadaan tietoa ensisijaisesti satelliittien, avaruusteleskooppien sekä suurten maanpäällisten kaukoputkien avulla. Vuonna 2008 laukaistavan Planck-satelliitin odotetaan antavan paljon hyödyllistä tietoa maailmankaikkeuden alkuajoista mittaamalla mikroaaltotaustasäteilyä. Suomessa satelliitin tekniikkaan panostetaan 10 miljoonaa euroa.
[muokkaa] Fysiikan käsitys todellisuudesta
-
Pääartikkeli: Fysikaalinen todellisuuskäsitys
Fysikaalisella todellisuuskäsityksellä tarkoittaa tässä fysiikan tämänhetkisiin tuloksiin perustuvaa kokonaiskäsitystä todellisuudesta ja sen rakenteesta. Havaittu kaikkeus muodostuu sisäkkäisistä rakenteista, jotka vuorovaikuttavat keskenään neljällä perusvuorovaikutuksella. Tyypillistä on jakaa hahmotettavat asiat ja ilmiöt makroskooppisiin eli silmin havaittaviin ja mikroskooppisiin eli hyvin pieniin, joita ei voida havaita silmin. Näiden väliin jäävää aluetta kutsutaan mesoskooppiseksi. Makroskooppiset ilmiöt voidaan useimmiten perustella mikroskooppisten ilmiöiden pohjalta. Esimerkiksi lämpötilan nousu johtuu rakenneosasten lämpöliikkeen nopeutumisesta.
- Kaikkeuden ihmiselle hahmottuvat tasot:
- galaksijoukot
- galaksit
- aurinkokunnat
- yksittäiset taivaankappaleet, kuten tähdet ja planeetat
- ihmisen suuruusluokkaa olevat kappaleet
- molekyylit
- atomit
- ytimet
- alkeishiukkaset.
- Perusvuorovaikutukset:
[muokkaa] Fysiikan tutkimusmenetelmät
-
Pääartikkeli: Luonnontieteellinen menetelmä
[muokkaa] Yleistä
Fysiikka on 'kokeellinen teorioita todellisuudesta luova tiede'. Fysiikan teorioiden tulee olla kokeellisesti testattavissa eli niiden tulee antaa kokeellisesti testattavia ennusteita. Fysiikka voidaan jakaa kahteen osaan, teoreettiseen fysiikkaan ja kokeelliseen fysiikkaan. Teoreettisessa fysiikassa muodostetaan ja tutkitaan matematiikan ja intuition avulla teorioita. Kokeellisessa fysiikassa suoritetaan kokeita, joilla testataan teorioiden antamien ennusteiden paikkansapitävyyttä. Kokeilla teoria saatetaan falsifoida eli todeta vääräksi tai puutteelliseksi mutta ei koskaan todistaa oikeaksi, vaan ainoastaan kokeen kohteena olleessa tapauksessa selityskykyiseksi. Fysikaalinen tieto on jatkuvasti keskeneräistä. Aiempaa tarkemman havaintovälineen käyttöönotto voi tuoda uusia havaintoja, joita vanha teoria ei selitä tai uusi teoreettinen keksintö tuo uuden näkökulman asiaan.
Fysiikka tieteenä pyrkii mahdollisimman suureen rakenteellisuuteen. Rakenteellisuus merkitsee pyrkimystä irrallisista laeista kiinteän yhtenäisen kokonaiskuvan muodostamiseen, pyrkimystä hierarkkiseen tietorakenteeseen, jossa yksittäiset relaatiot ovat jäsentyneet hallittavaksi, ymmärrettäväksi ja ristiriidattomaksi kokonaisuudeksi, teoriaksi. Perimmäisenä pyrkimyksenä fysiikassa on luoda niin sanottu kaiken teoria, joka selittäisi kaikki luonnon vuorovaikutukset.
[muokkaa] Matematiikka ja tekniikka
Fysiikka on 'matemaattinen tiede'. Teoreettinen fysiikka ja yleensäkin teorioiden muodostaminen on kulkenut rinta rinna matemaattisen kehityksen kanssa.
Kokeellisen fysiikan kehitys on tiukasti sidoksissa tekniseen kehitykseen. Toisaalta fysiikka on keskeinen osa nykyistä teknistä kehitystä. Varhaisimpia esimerkkejä teknisen laitteen käyttöönotosta ja kokeellisen fysiikan kehitysaskeleesta on Galileo Galilein kaukoputkihavainnot ja ylipäätään tähtitieteen kehitys. Mittalaitteet mahdollistavat luonnon havainnoinnin ihmiselle muuten tavoittamattomissa olevilla tasoilla, ne laajentavat ja tarkentavat 'näkökenttää'.
Uudempi niin kutsuttu tietotekniikka mahdollistaa laskennon ja mallintamisen laajentumisen ihmisen omia kykyjä suuremmaksi, ne laajentavat ihmisen 'ajatuskykyä'. Näin teknisestä kehityksestä tulee osa myös fysiikan teoreettista puolta.
[muokkaa] Fysiikan tutkimus
-
Pääartikkeli: Fysiikan tutkimus
Koska fysiikka on luontoa mallintava ja selittävä tiede sen tutkimus kohdistuu luontoon ja pyrkii muodostamaan havaitusta maailmasta mahdollisimman tarkan matemaattisen mallin. Fysiikassa tieto perustuu havaintoihin ja mittauksiin. Havainnoille haetaan teoreettisia selitysmalleja ja teorian ennusteet testataan kokeellisesti. Kokeellisen tutkimuksen voi periaatteessa kuka tahansa toistaa ja tarkistaa, ja mittaustulokset ovat henkilöistä ja mielipiteistä riippumatonta tietoa.[43] Fysiikan tutkimus voidaan periaatteen tasolla jakaa perustutkimukseen ja soveltavaan tutkimukseen. Käytännössä perustutkimuksen ja soveltavan tutkimuksen ero saattaa olla vain työn motivaatiossa.
[muokkaa] Perustutkimus
Perustutkimuksen tarkoituksena on lisätä fysikaalisen tiedon määrää ja lopulta yhdistää se fysiikan käsitykseen todellisuudesta. Tavoitteena on teoria, joka kykenee selittämään mahdollisimman vähäisillä oletuksilla luonnon toimintaa ja rakennetta. Tutkimus voidaan jakaa teoreettisiin ja kokeellisiin osiin. Teoriavaiheessa muodostetaan teorian eli matemaattisen mallin pohjalta mitattavassa olevia ennustuksia. Sitten koevaiheessa suoritetaan mittauksia, joiden jälkeen käsitellään tulos virhearvioineen ja todetaan pitikö teorian ennustukset paikkansa.
Fysiikan perustutkimusta tehdään yliopistoissa ja suurissa kansainvälisissä tutkimuslaitoksissa ympäri maailmaa. Kokeellisen fysiikan kokeet, kuten hiukkasten suurenergiset törmäyttämiset, saattavat vaatia suuriakin koejärjestelyitä. Yleensä mitä pienempää kohdetta tutkitaan sitä suurempia tutkimuslaitteita tarvitaan. Avaruuden tutkiminen taas vaatii avaruuteen lähetettäviä tutkimuslaitteita kuten Hubble-avaruusteleskooppi. Mittaustulosten laskenta ja teoreettinen mallinnus vaatii runsaasti laskentatehoa. Näiden seikkojen vuoksi kokeellinen perustutkimus vaatii runsaasti resursseja ja kansainvälistä yhteistyötä.
[muokkaa] Soveltava tutkimus
Fysiikan soveltavaa tutkimusta tehdään aivan perustutkimuksen läheisyydessä alkaen yhden hengen yrityksistä aina Bell Labs'in kaltaisiin suuriin tuhansia henkilöitä käsittäviin tutkimuskeskuksiin. Insinööri on selvin fysikaalisen tietämyksen käytännön ongelmiin soveltaja, mutta yhä enenevässä määrin mm. lääkärit ja taloustieteilijät käyttävät fysiikan tietämystä ja menetelmiä työssään. Lisääntyvä erikoistuminen luo jatkuvasti uusia fysiikan aloja ja äärimmäisessä tapauksesta yhtä alaa saattaa tutkia koko Maassa vain yksi ainoa tutkimusryhmä. Runsas tekniikan hyödyntäminen kaikessa fysiikan tutkimuksessa johtaa siihen, että kokeellisen fyysikon ja insinöörin välinen raja voi olla kuin veteen piirretty viiva.
[muokkaa] Fysiikka muissa tieteissä
Fysiikka kuuluu niin sanottuihin perustieteisiin, joita muut tieteet soveltavat omiin tarkoituksiinsa. Lähes jokainen tieteenala soveltaa omissa tutkimuksissaan fysiikan teoriaa tai vähintään jotain fysiikan sovellutusta. Fysiikan ja muiden luonnontieteiden välinen ero on joskus kuin veteen piirretty viiva. Jotkut fysiikan alat ovat hyvin lähellä kemiaa, ja vastaavasti toiset lähellä tähtitiedettä.
Useat lääketieteelliset kuvaus- ja mittausvälineet ovat suoria sovellutuksia fysiikasta. Kuuluisin ja käytetyin kuvantamismenetelmä on röntgenkuvaus. Radioaktiivisuuden löytämisen jälkeen ymmärrettiin röntgensäteilyn haittavaikutukset, ja ionisoivan säteilyn käyttöä on pyritty vähentämään. Tilalle ovat tulleet ultraäänitutkimus ja magneettikuvaus. Lääketieteellisen tiedekunnan pääsykokeissa fysiikan hallitseminen on pakollista.
Elektronisten laitteiden kasvanut määrä on lisännyt fysiikan osaamista myös elektronisten laitteiden kehittämisessä ja laadunvalvonnassa. Fysiikan uusimpiin sovellutuksiin kuluttajamarkkinoilla kuuluvat sinistä laseria käyttävät mediatallenteet kuten HD DVD ja Blu-Ray. Sinisen laserin lyhyempi aallonpituus on mahdollistanut suuremman datamäärän tallentamisen yhdelle levylle ilman levyn fyysisen koon kasvattamista. Elektronisissa laitteissa käytetään poikkeuksetta transistoreita, mikä on mahdollistanut tietotekniikan nopean kehittymisen.
Muita fysiikkaa hyödyntäviä tieteenaloja ovat geologia, meteorologia, biologia ja biofysiikka.
[muokkaa] Fysiikka ammattina
-
Pääartikkeli: Fyysikko
Fyysikko on fysiikan tutkija, jonka pyrkimyksenä on fysikaalisen tietämyksen lisääminen. 1900-luvulla kiihtynyt fysiikan edistyminen ja erikoistuminen on johtanut siihen, että useimmat fyysikot työskentelevät samalla alalla koko elämänsä. Yleinen, muissakin tieteissä havaittava, tiedon lisääntyminen on tehnyt Albert Einsteinin kaltaisista useilla fysiikan aloilla toimineista fyysikoista hyvin harvinaisia. Muita modernin fyysikon työn piirteitä ovat erikoistumisen vastapainoksi suuret tutkimusryhmät ja suuret koejärjestelyt, varsinkin kokeellisessa fysiikassa. Kansainvälisyys on oleellinen osa fysiikan tutkimusta siinä missä muissakin luonnontieteissä.
Soveltavaa tutkimusta tekeviä fyysikoita työskentelee kaikilla niillä aloilla, missä fysiikkaa sovelletaan riittävän korkealla osaamistasolla. Tästä tutkimuksesta ydinaseen kehittänyt Manhattan-projekti on tyyppiesimerkki. Sähkömagnetismin keksimisestä lähtien yhä enenevässä määrin teoria on edeltänyt uusia keksintöjä. Tämä on lähentänyt fyysikon ja insinöörin toimenkuvaa, kun varhaisemman erehtymisen ja onnistumisen -menetelmän rinnalle tekniseen kehitystyöhön on tullut fysikaalisia malleja hyödyntävä menetelmä. Toisaalta teorian merkityksen nousu on keskeinen piirre myös fysiikan sisällä. Tämä teoreettisen fysiikan nousu alkoi 1800-luvulta lopulta, kun Maxwellin yhtälöt ennakoivat radioaaltojen vastaanottamisen ja lähettämisen olevan mahdollista [44].
[muokkaa] Fysiikan opiskelu
[muokkaa] Suomessa
Suomessa fysiikan opiskelu alkaa pakollisena aineena peruskoulussa. Peruskoulun fysiikassa pyritään ennemmin kokeellisuuteen kuin teoreettiseen ajatteluun.[45] Lukiossa fysiikasta on yksi pakollinen kurssi sekä seitsemän valtakunnallista syventävää kurssia. Valtakunnallisten kurssien lisäksi lukiot tarjoavat omia syventäviä kursseja.[46] Fysiikan opiskelijoita valittaessa heiltä vaaditaan lukio-opintojen perusteella ylioppilaskoemenestystä sekä fysiikasta että matematiikasta. Tämän lisäksi painotetaan suoritettujen kurssien lukumäärää ja päättötodistuksen arvosanaa.[47] Vuosittain noin 80 % fysiikan opiskelijoista valitaan lukio-opintojen menestyksen perusteella ja muut taas valintakokeiden perusteella.[47] Pintapuolisesti fysiikkaa opetetaan myös kaikissa teknisen alan oppilaitoksissa.
Fysiikkaa opetetaan omana oppiaineenaan yliopistoissa yleensä matemaattis-luonnontieteellisissä tiedekunnissa. Opintojen tutkintonimike on tasosta riippuen luonnontieteiden kandidaatti, filosofian maisteri, filosofian lisensiaatti tai filosofian tohtori. Kohtuullisen fysiikan tutkimustyön jälkeen henkilöä voidaan kutsua fyysikoksi. Puhdasta fysiikkaa opetetaan merkittävästi myös teknillisissä korkeakouluissa. Fysiikan opetus tapahtuu tavallisesti suomeksi, mutta esimerkiksi oppikirjat ovat usein englanninkielisiä heti peruskursseista lähtien. Perustutkintoon kuuluvat LuK-tutkimus ja Pro gradu -työ tehdään yleensä suomeksi. Myös lisensiaatin työ saatetaan tehdä suomeksi mutta väitöskirja tehdään lähes aina englanniksi.[48]
Olennaisena osana fysiikan opiskeluun kuuluu matematiikan opiskelu, sillä "matematiikkaa hallitsemattomasta ihmisestä ei tule fyysikkoa"[49]. Tavallisesti fysiikkaa yliopistossa pääaineena opiskelevat lukevat matematiikkaa sivuaineena ja yleensä se kuuluukin pakollisena opintoihin. Muita tyypillisiä sivuaineita ovat kemia, biologia sekä tietotekniikka. Fysiikkaa voidaan opiskella myös poikkitieteellisesti. Esimerkiksi Jyväskylän yliopistossa nanotieteen koulutusohjelmassa opiskellaan fysiikkaa, kemiaa ja biologiaa[50].
[muokkaa] Ulkomailla
Suomen liittyminen Euroopan unioniin on helpottanut opiskelijoiden siirtymistä opiskelemaan ulkomaille tai antanut mahdollisuuden ulkomaalaisten opiskelijoiden tulla Suomeen opiskelemaan. Esimerkiksi Erasmus-ohjelma antaa kaikkien alojen tutkinto-opiskelijoille mahdollisuuden 3–12 kuukauden tuettuihin korkea-asteen opintoihin EU:n jäsenmaissa, ETA-maissa (Islanti, Norja ja Liechtenstein), ja Turkissa. [51]
Suomi on yhteistyössä monien järjestöjen kanssa, esimerkiksi CERN:in ja ESA:n kanssa.
[muokkaa] Merkittävät fysiikan alan palkinnot ja tapahtumat
Kansainväliset palkinnot
- Nobelin fysiikanpalkinto
- Diracin palkinto
- Lorentzin mitali
- Albert Einstein -mitali
- Max Planck -mitali
Suomessa jaettavat palkinnot
- Väisälän palkinto (Suomalainen Tiedeakatemia)
- Magnus Ehrnroothin palkinto (Suomen Tiedeseura)
- Th. Homénin palkinto (Suomen Tiedeseura)
Tapahtumat
- Solvay-konferenssi
- Kansainväliset fysiikkaolympialaiset
- Poincaré Seminar
- Shelter Island Conference
- Fysiikan vuosi 2005
[muokkaa] Lähteet
- Marketta Ahtiainen, Vuokko Aromaa, Simo Heininen, Sirkka Kauppinen, Juha Sihvola: Eurooppalaisen ihmisen aikakirja. Edita Publishing Oy, 2006. ISBN 951-37-4216-4.
- Heikki Lehto, Tapani Luoma, Kari U. Eloranta: Fysiikka 1 – Fysiikka luonnontieteenä. Tammi, 2005. ISBN 951-26-4835-0.
- Heikki Lehto, Tapani Luoma, Raimo Havukainen, Janna Leskinen: Fysiikka 2-3 – Lämpö - Aallot. Tammi, 2006. ISBN 951-26-5223-4.
- Fölsing, Albrecht: Albert Einstein: Elämäkerta. (Alkuteos: Albert Einstein: Eine Biographie, 1995.) Suomentanut Seppo Hyrkäs. Helsinki: Terra Cognita, 1999. ISBN 952-5202-27-5.
[muokkaa] Viitteet
- ↑ Kielitoimiston sanakirja. Kotimaisten kielten tutkimuskeskuksen julkaisuja 132. Internet-versio MOT Kielitoimiston sanakirja 1.0. Helsinki: Kotimaisten kielten tutkimuskeskus ja Kielikone Oy, 2004. ISBN 952-5446-11-5.
- ↑ 2,0 2,1 Fysiikka 1 – Fysiikka luonnontieteenä s. 10
- ↑ 3,0 3,1 Fysiikka 1 – Fysiikka luonnontieteenä s. 11
- ↑ Jouko Seppänen: Klassisen fysiikan historia - Muinaisaika Viitattu 16. toukokuuta 2007.
- ↑ Jouko Seppänen: Klassisen fysiikan historia - Muinaisaika Viitattu 16. toukokuuta 2007.
- ↑ Hannu Karttunen: Demokritos (n. 460-370 eaa.) Ursa. Viitattu 16. toukokuuta 2007.
- ↑ Eurooppalaisen ihmisen aikakirja s.25
- ↑ Alma Jylhä: Henkeä tieteeseen Viitattu 16. toukokuuta 2007.
- ↑ Jumaltodistukset ja niiden kritiikkiä Argumentti.fi.
- ↑ Eurooppalaisen ihmisen aikakirja s. 98
- ↑ Reijo Rasinkangas: Tieteen ja ajattelun historiaa Oulun yliopisto.
- ↑ Simo Knuuttila: Aika ja ajattomuus Tieteellisten seurain valtuuskunta.
- ↑ Eurooppalaisen ihmisen aikakirja, s. 53
- ↑ Eurooppalaisen ihmisen aikakirja s. 98
- ↑ Jouko Seppänen: Klassisen fysiikan oppihistoria Viitattu 15. toukokuuta 2007.
- ↑ Fysiikka 2-3 s. 8
- ↑ Eric W. Weisstein: Dalton, John (1766-1844) (englanniksi)
- ↑ Luentomateriaali: Maxwell'in yhtälöt Jyväskylän yliopisto.
- ↑ Albert Einstein Elämäkerta s. 127
- ↑ Sadassa vuodessa mustan kappaleen säteilystä teleportaatioon Turun yliopisto.
- ↑ [1]
- ↑ The Nobel Prize in Physics 1937 (englanniksi)
- ↑ Marie Curie – elämä Terra Cognita.
- ↑ Kari Enqvist: Radioaktiivinen säteily -elämän ja kuoleman lähettiläs
- ↑ TFY-44.126 Kvanttimekaniikka I Teknillinen korkeakoulu.
- ↑ The Standard Model
- ↑ Fysiikan vuosi mediassa Suomen fyysikkoseura.
- ↑ Hannu Koskinen: Mekaniikka
- ↑ Sanasto Edu.fi. Viitattu 18. toukokuuta 2007.
- ↑ Antti-Juhani Kaijanaho: Klassisen fysiikan aikakausi Viitattu 1. elokuuta 2007.
- ↑ 766321A Sähkömagnetismi I 4 op Oulun yliopisto.
- ↑ http://butler.cc.tut.fi/~trantala/opetus/files/Misc/LO.A4.pdf
- ↑ http://www.tiede.fi/uutiset/uutinen.php?id=208
- ↑ Euroopan avaruusjärjestö: Maailman suurin avaruuspeili Turkuun 25. kesäkuuta 2004. ESA. Viitattu 29. toukokuuta 2007.
- ↑ Leo Kärkkäinen: Akustiikka
- ↑ Lämpö – Aallot 2-3 s. 213
- ↑ Lämpö – Aallot 2-3 s. 222
- ↑ 38,0 38,1 Hannu Karttunen: Erikoinen suhteellisuusteoria Ursa. Viitattu 18. toukokuuta 2007.
- ↑ 39,0 39,1 Antti-Juhani Kaijanaho: Fyysinen todellisuus: Modernin fysiikan aikakausi 1996. Viitattu 18. toukokuuta 2007.
- ↑ Kari Rummukainen: Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa Viitattu 18. toukokuuta 2007.
- ↑ Hannu Koskinen: Avaruusfysiikka Helsingin yliopisto. Viitattu 22. toukokuuta 2007. (englanniksi)
- ↑ Avaruusfysiikka Ilmatieteen laitos. Viitattu 22. toukokuuta 2007.
- ↑ Edu.fi: Fysiikan tutkimus Edu.fi. Viitattu 22. toukokuuta 2007.
- ↑ Kari Enqvist: Kadonneen substanssin metsästys Helsingin yliopisto. Viitattu 29.5.2007.
- ↑ Pedagoginen toiminta Matemaattisten Aineiden Opettajien Liitto MAOL ry.
- ↑ Valtioneuvoston asetus lukiokoulutuksen yleisistä valtakunnallisista tavoitteista ja tuntijaosta 14.11.2002/955 FINLEX ® - Valtion säädöstietopankki.
- ↑ 47,0 47,1 Fysiikan valintaperusteet 13. toukokuuta 2005. Luonnontieteet.fi. Viitattu 19. toukokuuta 2007.
- ↑ Opinnaytteet 2006 Turun yliopisto. Viitattu 19.5.2007.
- ↑ Sinustako fyysikko Oulun yliopisto. Viitattu 17.5.2007.
- ↑ Nanoscience Center:Opinnot Jyväskylän yliopisto. Viitattu 17.5.2007.
- ↑ Mikä on Sokrates/Erasmus-ohjelma? Tampereen yliopisto. Viitattu 28.5.2007.
[muokkaa] Katso myös
[muokkaa] Aiheesta muualla
- Suomen fyysikkoseura
- Suomen Fysiikanopiskelijat ry
- European Physical Society
- American Institute of Physics
- Institute of Physics
- International Union of Pure and Applied Physics
- International Association of Physics Students
- American Physical Society
- Society of Physics Students
- Einstein@home-projektin kotisivut
Suomenkielisen fysiikan opetuksen tarjoajat:
- Helsingin yliopiston Fysikaalisten tieteiden laitos
- Joensuun yliopiston fysiikan laitos
- Jyväskylän yliopiston fysiikan laitos
- Kuopion yliopiston sovelletun fysiikan laitos
- Lappeenrannan teknillisen yliopiston fysiikan laitos
- Oulun yliopiston fysiikan laitos
- Tampereen teknillisen yliopiston fysiikan laitos
- Teknillisen korkeakoulun teknillisen fysiikan ja matematiikan osasto
- Turun yliopiston fysiikan laitos
- Vaasan yliopiston fysiikan ja materiaalitekniikan laitos
- Åbo akademin fysiikan laitos (ruotsiksi)
- Teknillisen korkeakoulun kylmälaboratorio (englanniksi)
[muokkaa] Kirjallisuutta
- Karttunen, Hannu: Fysiikka. Tiedettä kaikille. Ursan julkaisuja 89. Helsingissä: Tähtitieteellinen yhdistys Ursa, 2006. ISBN 952-5329-32-1.
Korkeakoulujen perusoppikirjoja
- Kaarle ja Riitta Kurki-Suonio: Vuorovaikuttavat kappaleet - mekaniikan perusteet. 5. painos. Limes ry, 2000.
- Kaarle ja Riitta Kurki-Suonio: Vuorovaikutuksista kenttiin - sähkömagnetismin perusteet. 5. painos. Limes ry, 1999.
- Kaarle ja Riitta Kurki-Suonio: Aaltoliikkeestä dualismiin. 4. painos. Limes ry, 1997.
- Maalampi, Jukka & Tapani Perko: Lyhyt modernin fysiikan johdatus. 4. korj. painos. Helsinki: Limes, 2006. ISBN 951-745-213-6.