Codice Sconto: E463456

This WebPage/Resource is provided by https://www.classicistranieri.com

Röntgensäteily – Wikipedia

Röntgensäteily

Wikipedia

Wilhelm Röntgenin ottama röntgenkuva Alfred von Kollikerin kädestä, 23. tammikuuta 1896
Wilhelm Röntgenin ottama röntgenkuva Alfred von Kollikerin kädestä, 23. tammikuuta 1896

Röntgensäteily on sähkömagneettisen säteilyn laji. Sen aallonpituus on noin 0,01–10 nanometriä eli paljon lyhyempiaaltoista kuin näkyvä valo.

Sisällysluettelo

[muokkaa] Historia

Saksalainen Wilhelm Röntgen teki vuonna 1895 tutkimuksia katodisädeputkella selvittääkseen, mitä katodista lähtevä putken läpi virtaava säteily oikein on. Yhtäkkiä hän huomasi, että jotkut koelaitteiston läheisyydessä olevat mineraalinäytteet alkoivat hohtaa aavemaista valoa. Röntgen luuli ”paholaisen päässeen irti”, mutta pian kuitenkin huomasi kyseisen hohtavan valon syntyvän vain koelaitteiston ollessa päällä. Siitä hän päätteli, että koelaitteisto tuotti entuudestaan tuntematonta säteilylajia. Lisäkokeet paljastivat, että tämä X-säteily tunkeutui paperin, puun, käden ja ohuen metallinkalvon läpi. Säteily myös jätti jälkiä valokuvausfilmiin. Röntgen ymmärsi keksintönsä lääketieteellisen merkityksen ja tie tutkimuksesta käytännön sovellutuksiin oli nopea. Suomeen, Helsingin Kirurgiseen sairaalaan, hankittiin ensimmäinen röntgenlaite jo vuonna 1897 eli kaksi vuotta ensimmäisten kokeiden jälkeen. Röntgen sai puolestaan ensimmäisen fysiikan Nobelin palkinnon vuonna 1901.

Röntgensäteilyllä oli myös merkittävä rooli 1900-luvun alussa, kun klassinen fysiikka osoittautui riittämättömäksi joidenkin ilmiöiden selittäjänä. Röntgensäteillä havaitussa Comptonin ilmiössä sironneiden säteiden energia muuttuu. Tämä ilmiö on selitettävissä vain valon hiukkaskuvassa ja on näin kiistaton todiste sähkömagneettisen säteilyn dualistisesta aalto-hiukkasluonteesta. Comptonin sironnalla saadaan myös tietoa elektronien nopeusjakaumasta aineessa. Vuosisadan alkupuolen kokeet osoittivat, ettei muun muassa metallien johde-elektronit noudata klassisen fysiikan mukaista Maxwellin–Boltzmannin jakaumaa vaan kvanttimekaanista Fermin-Diracin jakaumaa [1].

Nykyään röntgensäteitä käytetään muun muassa lääketieteessä, läpivalaisussa turvatarkastuksissa lentoasemilla ja raja-asemilla, erilaisten rakenteiden mikrohalkeamien etsinnässä, ja aineen atomitason rakenteen tutkimuksessa. Nykyään säteilyherkkä staattisen kuvan säilövä kuvafilmi on korvattu elektronisella ilmaisimella ja kuva tallennetaan ja käsitellään digitaalisesti. Digitaaliset ilmaisimet ovat herkempiä kuin filmit, joten tutkimuksissa käytettyjä säteilyannoksia on voitu vähentää huomattavasti. Filmien jäädessä pois ei myöskään tarvita kehitys- ja kiinnitekemikaaleja, jotka ovat ympäristölle haitallisia. Digitaalisten kuvien käyttöönsaaminen on nopeampaa ja lisäksi niitä voidaan lähettää ja tallentaa helpommin kuin filmejä.

[muokkaa] Röntgensäteilyn tuottaminen

Yksinkertainen röntgenputki.
Yksinkertainen röntgenputki.
Pääartikkeli: Röntgenputki

Röntgenputki on historiallisesti ensimmäinen tunnettu tapa synnyttää röntgensäteilyä. Putkessa olevasta hehkulangasta irtoaa elektroneja, jotka kiihdytetään putkessa olevassa sähkökentässä. Suurinopeuksiset elektronit iskeytyvät putken keskellä olevaan metallilevyyn ja jarruuntuvat voimakkaasti. Sähködynamiikan yhtälöiden mukaan kiihtyvässä liikkeessä oleva sähköisesti varattu hiukkanen lähettää sähkömagneettista säteilyä.

Pääartikkeli: Synkrotronisäteily

Synkrotronilähteet ovat nykyaikainen tapa tuottaa röntgensäteilyä muun muassa materiaalifysiikan tutkimuksen tarpeisiin. Synkrotroni on varta vasten säteilyn tuottamiseen tarkoitettu hiukkaskiihdytin, missä säteily syntyy, kun lähes valonnopeudella liikkuvan varatun hiukkassuihkun rataa kaareutetaan magneettikenttien avulla. Näin syntynyt, niin kutsuttu synkrotronisäteily soveltuu fysikaalisilta ominaisuuksiltaan monin verroin perinteistä röntgenputkesta saatavaa säteilyä paremmin tutkimuskäyttöön. Synkrotronisäteilyn suuri intensiteetti, valittavissa oleva polarisaatio ja säteilyn intensiteetin pulssittunut aikarakenne mahdollistavat joukon uusia kokeita.

[muokkaa] Röntgentähtitiede

Pääartikkeli: Röntgentähtitiede

Röntgentähtitiede (engl. X-ray astronomy) sai alkunsa korkealla lentävien pallojen ja rakettien mittalaitteiden mittauksista. 1950-luvun lopun satelliitit mittasivat Auringon röntgensäteilyä. Sittemmin on rakennettu erityisiä röntgenobservatoriosatelliitteja, esimerkiksi ESAn vuonna 1999 laukaisema XMM-Newton. Vuonna 2002 italialais-amerikkainen fyysikko Riccardo Giacconi sai Nobelin fysiikanpalkinnon suurelta osin röntgenastronomiaa koskevan työnsä ansiosta.

[muokkaa] Lähteet

  1. X-rays in Theory and Experiment, A.H. Compton and S.K.A. Compton

[muokkaa] Katso myös

[muokkaa] Aiheesta muualla

Commons
Wikimedia Commonsissa on kuvia tai muita tiedostoja aiheesta röntgensäteily.



Codice Sconto: E463456

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -