Triángulo
Na Galipedia, a wikipedia en galego.
Un triángulo é un polígono (figura plana) de tres lados e tres ángulos. A suma dos tres ángulos do triángulo é de 180 graos.
Índice |
[editar] Propiedades dos triángulos
- A superficie ou área calcúlase pola fórmula onde b é a lonxitude dun lado (a base) e h a altura respecto dese lado.
- A suma das lonxitudes de dous dos seus ángulos é sempre maior ca do terceiro lado.
- A suma dos seus ángulos é igual a 180º.
- Teorema de Pitágoras: nun triángulo rectángulo, a suma dos cadrados dos catetos é igual ao cadrado da hipotenusa: a² + b² = c²
- Teorema do seno: nun triángulo calquera, os lados son proporcionais aos senos dos ángulos opostos:
- Teorema do coseno: nun triángulo calquera, o cadrado dun lado é igual á suma dos cadrados dos outros lados menos o dobre do produto destes lados polo coseno do ángulo comprendido entre eles:
- a2 = b2 + c2 − 2bc * cos(A)
- b2 = a2 + c2 − 2ac * cos(B)
- c2 = a2 + b2 − 2ab * cos(C)
[editar] Tipos de triángulos
O triángulo, en función dos seus lados, pode ser:
- Equilátero: cando o triángulo ten os seus tres lados (e polo tanto os seus ángulos) iguais.
- Isóscele: cando ten dous lados (e dous ángulos) iguais, e outro desigual.
- Escaleno: cando ten os tres lados (e ángulos) desiguais.
O triángulo, en función dos seus ángulos, pode ser:
- Acutángulo: cando ten os seus tres ángulos agudos (menores de 90 graos).
- Rectángulo: cando ten un ángulo recto (de 90 graos).
- Obtusángulo: cando ten un ángulo obtuso (maior de 90 graos).
[editar] O triángulo rectángulo
Un caso especial e amplamente estudiado é o do triángulo rectángulo polas súas propiedades xeométricas. Neste tipo de triángulos, o lado oposto ó ángulo de 90 graos chámase hipotenusa, e os outros dous catetos. A área dun triángulo rectángulo pódese calcular como o produto (das lonxitudes) dos catetos dividido entre dous. Ademais, sempre se cumpre que o cadrado da hipotenusa é igual á suma dos cadrados dos catetos (propiedade enunciada no Teorema de Pitágoras).
Ademais, defínese o coseno dun ángulo como a lonxitude do cateto contiguo partido pola hipotenusa, e o seno como cateto oposto dividido entre a hipotenusa. A tanxente será a razón entre o cateto oposto e o contiguo, ou entre o seno e o coseno.
Se xuntamos dous triángulos rectángulos iguais superpoñendo as súas hipotenusas, a figura resultante é un rectángulo (de aí a relación entre o cálculo das áreas de ambas figuras). Se os triángulos unidos son, ademais de rectángulos, isósceles (os ángulos agudos son de 45 graos), resulta un cadrado.
[editar] Liñas e puntos notables dos ángulos
- Altura e ortocentro: a altura dun triángulo é a prependicular trazada dende un vértice ao seu lado oposto. O punto onde se cortan as tres alturas é o ortocentro.
- Mediana o transversal de gravedad e baricentro: a mediana é a liña que une un vértice coa metade do seu lado oposto. O punto de corte entre as tres medianas chámase baricentro.
- Mediatriz e circuncentro: levantando perpendiculares polo punto medio de cada un dos lados obtéñense as mediatrices. O punto no que se cortan as tres mediatrices é o circuncentro, e é o centro da circunferencia circunscrita ao triángulo.
- Bisectriz e incentro: a bisectriz dun ángulo é o lugar xeométrico dos puntos que equidistan dos lados. O incentro é o punto no que converxen as bisectrices, e ademais é o centro da circunferencia inscrita no triángulo.
Polígonos regulares |
---|
Triángulo | Cuadrilátero | Pentágono | Hexágono | Heptágono | Octágono | Eneágono | Decágono | Endecágono | Dodecágono | Tridecágono | Tetradecágono | Pentadecágono | Hexadecágono | Heptadecágono | Octodecágono | Eneadecágono | Isodecágono | Triacontágono | Pentacontágono | Hectágono |