See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
முக்கோணம் - தமிழ் விக்கிபீடியா (Tamil Wikipedia)

முக்கோணம்

கட்டற்ற கலைக்களஞ்சியமான விக்கிபீடியாவில் இருந்து.

ஒரு முக்கோணம்
ஒரு முக்கோணம்

முக்கோணம், என்பது மிகச் சிறிய எண்ணிக்கையுள்ள நேர்க்கோடுகளால் ஒரு பரப்பை அடைக்க வல்ல ஒரு அடிப்படையான வடிவம். வடிவக்கணித (கேத்திரகணித) அடிப்படை வடிவங்களில் ஒன்று. பேருக்கு ஏற்றார்போல் இவ்வடிவம் மூன்று கோணங்களையும், மூன்று உச்சிகளையும், நேர்கோடுகளாலான மூன்று பக்கங்களையும், கொண்ட, ஒரு தட்டையான, இரு பரிமாண உருவமாகும்.

பொருளடக்கம்

[தொகு] முக்கோண வகைகள்

முக்கோணங்களை, அவற்றின் பக்கங்களின் நீளங்கள் தொடர்பில் வகைப்படுத்தமுடியும். இவை பின்வருமாறு:

  • எல்லாப் பக்கங்களும் ஒரே அளவு நீளமுள்ளதாக இருப்பின் அது, சமபக்க முக்கோணம் எனப்படும். ஒரு சமபக்க முக்கோணம், சமகோண (எல்லாக் கோணங்களும் சமம்) முக்கோணமாகவும் இருக்கும்.
  • இரண்டு பக்கங்கள் சம அளவுள்ளதாக இருக்கும் முக்கோணம் இருசமபக்க முக்கோணம் எனப்படும். இருசமபக்க முக்கோணமொன்றில் இரண்டு கோணங்களும் ஒன்றுக்கொன்று சமமாக இருக்கும்.
  • ஒன்றுக்கொன்று சமனில்லாத மூன்று பக்கங்களையுடைய முக்கோணம் சமனில் பக்க முக்கோணமாகும். இவ்வகை முக்கோணத்தின் ஏதாவது இரண்டு கோணங்களும் சமனற்றவையாகும்.

முக்கோணங்களின் மிகப்பெரிய கோணத்தின் அடிப்படையிலும், முக்கோணங்களை வகைப்படுத்த முடியும்.

  • ஒரு கோணம் செங்கோணமாக (90 பாகை அல்லது π/2 ரேடியன் அளவு) அமைந்துள்ள முக்கோணங்கள், செங்கோண முக்கோணங்கள் எனப்படுகின்றன. செங்கோணத்துக்கு எதிராக உள்ள பக்கம் செம்பக்கம் என அழைக்கப்படும். இதுவே செங்கோண முக்கோணமொன்றின் மிக நீளமான பக்கமாகும்.
  • முக்கோணத்திலுள்ள ஒர் கோணம் ஒரு செங்கோணத்திலும் பெரிதாக இருந்தால் அது விரிகோண முக்கோணம் எனப்படும்.
  • எல்லாக் கோணங்களும் செங்கோணத்திலும் சிறிதாக இருப்பின் அத்தகைய முக்கோணம் ஒரு கூர்கோண முக்கோணமாகும்.
பல்வேறு வகை முக்கோணங்கள்

[தொகு] அடிப்படை உண்மைகள்

முக்கோணம் மூன்று பக்கங்களுடைய ஒரு பல்கோணமாகும்.

ஒரு முக்கோணத்தைச் சீராக விரிவடையச் செய்வதன்மூலம் மற்றைய முக்கோணத்தைப் பெறமுடியுமெனில், அவ்விரு முக்கோணங்களும் ஒத்த முக்கோணங்கள் எனக் கூறப்படுகின்றன. இதில் அம் முக்கோணங்களின் பக்கங்கள் விகிதசமனானவை. முக்கோணமொன்றின் நீளமான பக்கம், ஒத்த முக்கோணமொன்றின் நீளமானபக்கத்தின் இரண்டுமடங்காயின், முதல் முக்கோணத்தின் சிறிய பக்கமும், மற்ற முக்கோணத்தின் சிறியபக்கத்தின் இரண்டுமடங்காக இருக்கும். மூன்றாவது பக்கமும் அவ்வாறே மற்றதன் இரண்டுமடங்காகக் காணப்படும். அத்துடன் முதல் முக்கோணத்தின் ஏதாவது இரண்டு பக்கங்களுக்கிடையேயான விகிதம், இரண்டாவது முக்கோணத்தின் ஒத்த பக்கங்களுக்கிடையேயான விகிதத்துக்குச் சமனாகும். இரண்டு முக்கோணங்களின் ஒத்த கோணங்கள் ஒன்றுக்கொன்று சமனாக இருப்பின் மட்டுமே அவ்விரு முக்கோணங்களும் ஒத்தவையாக இருக்கும்.

செங்கோண முக்கோணங்களையும், ஒத்தமுக்கோணங்கள் பற்றிய எண்ணக்கருவையும் பயன்படுத்தி, சைன், கோசைன் போன்ற திரிகோணகணித functions வரையறுக்கப்பட்டுள்ளன.

A, B, C என்பவற்றை உச்சிகளாகவும், α, β, γ என்பவற்றைக் கோணங்களாகவும், a, b, c களைப் பக்கங்களாகவும் கொண்ட முக்கோணத்தில், பக்கம் a கோணம் α வுக்கும், உச்சி A க்கும் எதிரேயுள்ளது. இதே போலவே ஏனைய பக்கங்களுமாகும். எனின்,

படிமம்:Triangle.png

α, β, γ கோணங்களின் கூட்டுத்தொகை இரண்டு செங்கோணங்களுக்குச் சமன் அல்லது 180 பாகை ஆகும். (α + β + γ = 180 பாகை).

முக்கோணம் தொடர்பான தேற்றங்களில், பைதகொரசின் தேற்றம் முக்கியமான ஒன்று. இது ஒரு செங்கோண முக்கோணத்தின் பக்கங்களுக்கிடையேயான தொடர்பைக் காட்டுகிறது. இதன்படி, ஒரு செங்கோண முக்கோணத்தில், செம்பக்கத்தின் வர்க்கம், ஏனைய இரண்டு பக்கங்களின் வர்க்கங்களின் கூட்டுத்தொகைக்குச் சமன். மேலேயுள்ள முக்கோணத்தில் γ ஒரு செங்கோணமாக இருந்தால்,

c2 = a2 + b2

பைதகொரசின் தேற்றத்தை எல்லா முக்கோணங்களுக்கும் பொருந்தக்கூடியவகையில் பொதுமைப் படுத்த முடியும். இது கோசைன் விதி என அழைக்கப்படும். இதன்படி:

c2 = a2 + b2 - 2abcos(γ)


முக்கோணம் தொடர்பான சைன் விதியின் படி,

sin(α) / a = sin(β) / b = sin(γ) / c

[தொகு] முக்கோணத்துடன், புள்ளிகள், கோடுகள், வட்டங்கள் என்பவற்றின் தொடர்பு

[தொகு] முக்கோணத்தின் பரப்பைக் கணித்தல்

ஒரு முக்கோணத்தின் பரப்பளவு பின்வரும் சமன்பாட்டினால் தரப்படுகின்றது.

S = 1/2 × அடி × உயரம்

இங்கு 'S' முக்கோணத்தின் பரப்பளவாகும்.

முக்கோணங்களின் பரப்பளவைக் கணிக்கப் பயன்படும் இன்னொரு சமன்பாடு ஹெரோனின் தொடர்பு பின்வருமாறு:

S = \sqrt{s(s-a)(s-b)(s-c)}

இங்கே s = 1/2 (a + b + c) அதாவது முக்கோணத்தின் சுற்றளவின் அரைவாசி.

மாற்றாக

S = sr

இங்கே s மேலே வரையறுக்கப்பட்டபடியும், r முக்கோணத்தின் உள்வட்டத்தின் ஆரையுமாகும்.

S = {1/2} \left| AB \times AC \right|

இதில் ABயும் ACயும் are the vectors pointing from A to B respectively C, and |AB × AC| denotes the length of their cross product. This is because |AB × AC| represents the area of the parallelogram formed by these vectors, and thus the area of the triangle is half this.

If the vertex A is located at the origin (0,0) of a Cartesian coordinate system and the coordinates of the other two vertices are given by B = (x1, y1) and C = (x2, y2), then the area S can be computed as 1/2 times the absolute value of the determinant

\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}

i.e.

S = {1/2} \left| x_1y_2 -y_1x_2 \right|



[தொகு] பின்வருவனவற்றையும் பார்க்கவும்

[தொகு] வெளி இணைப்புகள்


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -