Web - Amazon

We provide Linux to the World

ON AMAZON:


We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Uranio - Wikipedia

Uranio

Da Wikipedia, l'enciclopedia libera.

bussola Nota disambigua – Se stai cercando altri significati del termine uranio, vedi uranio (disambigua).
protoattinio - uranio - nettunio
Nd

Pa
  

tavola periodica, uranio
Generalità
Nome, Simbolo, Numero atomico uranio, U, 92
Serie chimica attinidi
Gruppo, Periodo, Blocco --, 7, f
Densità, Durezza 19050 kg/m3, n.d.
Aspetto metallo bianco-argenteo
aspetto dell' Uranio
Proprietà atomiche
Peso atomico 238,0289 amu
Raggio atomico (calc.) 175 (n.d.) pm
Raggio covalente nessun dato
Raggio di van der Waals 186 pm
Configurazione elettronica [Rn]7s25f36d1
elettroni (e-) per livello energetico 2, 8, 18, 32, 21, 9, 2
Stati di ossidazione 5 (debolmente basico)
Struttura cristallina ortorombica
Proprietà fisiche
Stato a temperatura ambiente solido (paramagnetico)
Punto di fusione 1405 K (1132°C)
Punto di ebollizione 4091 K (3818°C)
Volume molare 1,249 · 10-5 m3/mol
Calore di evaporazione 477 kJ/mol
Calore di fusione 15,48 kJ/mol
Tensione di vapore nessun dato
Velocità del suono 3155 m/s a 293,15 K
Varie
Elettronegatività 1,38 (scala di Pauling)
Calore specifico 120 J/(kg*K)
Conducibilità elettrica 3,8 · 106/m ohm
Conducibilità termica 27,6 W/(m*K)
Energia di prima ionizzazione 597,6 kJ/mol
Energia di seconda ionizzazione 1420 kJ/mol
Isotopi più stabili
iso NA TD DM DE DP
230U sintetico 20,8 giorni α   228Th
231U sintetico 4,28 giorni ε   231Pa
232U sintetico 68,9 anni α
fiss.
5,414 228Th
233U sintetico 159200 anni α
fiss.
4,909 229Th
234U 0,005% 245500 anni α
fiss.
4,859 230Th
235U 0,72% 7,038 · 108 anni α
fiss.
4,679 231Th
236U sintetico 2,342 · 107 anni α
fiss.
4,572 232Th
237U sintetico 6,75 giorni β   237Np
238U 99,275% 4,468 · 109 anni α
fiss.
4,270 234Th
239U sintetico 23 minuti β   239Np
240U sintetico 14,1 ore β   240Np 

iso = isotopo
NA = abbondanza in natura
TD = tempo di dimezzamento
DM = modalità di decadimento
DE = energia di decadimento in MeV
DP = prodotto del decadimento

L'uranio è l'elemento chimico di numero atomico 92. Il suo simbolo è U.

È un metallo bianco-argenteo, tossico e radioattivo; appartiene alla serie degli attinidi ed il suo isotopo 235U trova impiego come combustibile nei reattori nucleari e nella realizzazione di armi nucleari.

Tracce di uranio sono presenti ovunque: nelle rocce, nel suolo, nelle acque, persino negli organismi viventi.

Indice

[modifica] Caratteristiche

Puro, l'uranio si presenta come un metallo bianco-argenteo, debolmente radioattivo e di poco più tenero dell'acciaio. È malleabile, duttile e debolmente paramagnetico.

È un metallo molto denso (65% più denso del piombo). Diviso finemente, reagisce con l'acqua a temperatura ambiente; esposto all'aria si copre superficialmente di uno strato del proprio ossido.

L'uranio metallico si presenta in tre forme allotropiche

  • α - ortorombico, stabile fino a 667,7°C
  • β - tetragonale, stabile a temperature comprese tra 667,7 e 774,8°C
  • γ - cubico a corpo centrato, stabile a temperature comprese tra 774,8°C ed il punto di fusione, è la forma più duttile e malleabile delle tre.

L'isotopo 235U è importante sia per i reattori che per le armi nucleari perché è l'unico isotopo fissile esistente in natura in quantità apprezzabili.

Anche 238U può trovare impiego nei reattori nucleari, dove viene convertito in 239U per assorbimento di neutroni (fertilizzazione), il quale decade in 239Pu, fissile. Anche l'isotopo 233U è fissile; viene prodotto per bombardamento con neutroni di 232Th.

L'uranio fu il primo elemento fissile scoperto in natura; questa proprietà lo rende la principale materia prima per la bomba atomica e la costruzione e l'alimentazione di reattori nucleari.

L'uranio si estrae da due minerali: la Uraninite (detta anche Pechblenda) e la Carnotite.

L'uranio è importante anche per la datazione radiometrica dei fossili: l'uranio 238 si trasforma in piombo 206 in 4.510.000.000 anni.

[modifica] Isotopi

L'uranio naturale è composto da una miscela di tre isotopi, 234U, 235U, e 238U, di cui 238U è il più abbondante (99,3%), mentre il 234U costituisce una percentuale trascurabile del totale (0.0055%). Questi tre isotopi sono radioattivi; quello dotato di tempo di dimezzamento più lungo è il 238U (emivita: 4,5 · 109 anni), seguono 235U (7 · 108 anni) e 234U (2,5 · 105 anni). 238U emette prevalentemente particelle alfa decadendo in 206Pb stabile.

L' attività specifica naturale degli isotopi 234U e 238U, che praticamente coincide con quella dell'uranio estratto allo stato naturale, è quantificabile in 12,4 kBq/g (1 becquerel (Bq) rappresenta una disintegrazione al secondo), classificandosi nella fascia di rischio più bassa tra gli isotopi radioattivi. L'attività specifica naturale dell'isotopo 235U è molto inferiore, ed è pari a 0,6 kBq/g. Va necessariamente precisato, tuttavia, che il rischio indotto dalla radioattività dipende essenzialmente dalla concentrazione dell'isotopo di uranio nell'ambiente (misurata ad esempio in kBq/cm3), piuttosto che dalla sua attività intrinseca.

Gli isotopi dell'uranio vengono separati per aumentare la concentrazione di 235U rispetto a 238U; questo processo è chiamato arricchimento. L'uranio si considera "arricchito" quando la frazione di 235U è considerevolmente maggiore del livello naturale (circa lo 0,7%), tipicamente su valori compresi tra il 3% ed il 7%. 235U è il tipico materiale fissile per i reattori nucleari; qualora fortemente arricchiti, sia l'235U sia l'239Pu sono usati per la produzione di armi nucleari.


[modifica] Arricchimento dell'uranio

Per approfondire, vedi la voce uranio arricchito.
Uranio grezzo
Uranio grezzo

Per ottenere un materiale fissile che sia adatto a scopi nucleari, cioè che emetta una quantità sufficiente di neutroni, è necessario aumentare la concentrazione dell'isotopo 235U rispetto al più comune e meno radioattivo 238U. La concentrazione di 235U deve passare dallo 0,71% al 3,2% per i reattori nucleari ad acqua bollente (BWR) e del 3,6% per quelli ad acqua pressurizzata (PWR).

Il processo di concentrazione dell'uranio è un compito estremamente difficile: non è possibile separarli per via chimica, e l'unico modo è sfruttare la piccolissima (meno dell'1,5%) differenza di peso.

Per fare questo si fa reagire l'uranio metallico con fluoro ottenendo esafluoruro di uranio (UF6), un composto solido bianco, che sublima in fase gassosa al di sopra di 56,4 °C.

Questo composto viene usato nei due più comuni processi di arricchimento, l'arricchimento per diffusione gassosa (utilizzata soprattutto negli Stati Uniti) e quello per centrifugazione del gas (principalmente utilizzato in Europa). Allo stato attuale è in corso di sviluppo presso il Dipartimento dell'Energia americano una terza tecnologia di arricchimento chiamato a separazione laser, ancora in fase di studio. Un quarto metodo di arricchimento è quello della separazione termica, che però e meno efficiente delle tecnologie attuali e non viene più utilizzato.

Dopo l'arricchimento l'esafluoruro viene decomposto, riottenendo uranio metallico e fluoro gassoso, dopodiché è ossidato a formare diossido di uranio UO2 e quindi fuso in barre metalliche che andranno poi a costituire il combustibile del reattore nucleare.

Il processo di arricchimento produce enormi quantità di uranio impoverito, ossia uranio cui manca la corrispondente quantità di 235U. L'uranio si considera impoverito quando contiene valori di 235U generalmente compresi tra lo 0,2% e lo 0,3%, a seconda delle esigenze economiche e di produzione.

Per dare un'idea della tipica proporzione tra la uranio arricchito e uranio impoverito, da 100 kg di uranio metallico pronto per l'arricchimento si possono ottenere al massimo 12,5 kg di uranio arricchito al 3,6% e 87,5 kg di uranio impoverito allo 0,3%.

L'uranio impoverito viene generalmente stoccato come UF6 (che, come detto sopra, è un solido cristallino) amalgamato in cilindri di acciaio che ne contengono circa 12-13 tonnellate (secondo le procedure standard degli Stati Uniti).

[modifica] Applicazioni

L'uranio trova applicazione in due sue possibili forme: uranio arricchito ed uranio impoverito. Non è semplice fare una distinzione netta tra applicazioni civili e militari, in quanto esiste una permeabilità tra questi due utilizzi. Ad esempio, l'uranio arricchito può essere usato come combustibile nei reattori nucleari civili, ma anche nei reattori nucleari dei sottomarini e delle portaerei militari a propulsione nucleare.

[modifica] Applicazioni civili

Centrale nucleare tedesca
Centrale nucleare tedesca
Vetro colorato con uranio
Vetro colorato con uranio

L'uranio è un metallo molto denso e pesante. Nonostante la sua radioattività naturale, grazie al suo elevato peso specifico, trova impiego come materiale di zavorra e contrappesi di equilibratura in aerei, elicotteri, e in alcune barche a vela da regata. A volte è impiegato anche per costruire schermature di sorgenti altamente radioattive (soprattutto nel campo della radiografia industriale per la schermatura dei raggi gamma). Il piombo è un materiale con caratteristiche simili (e non radioattivo), che tuttavia è meno utilizzato dell'uranio per questi scopi.

Nel settore civile il principale impiego dell'uranio è l'alimentazione dei reattori delle centrali elettronucleari, dove viene usato un uranio arricchito al 2-3% di 235U. Esistono anche reattori come il canadese CANDU che possono essere alimentati da uranio naturale non preventivamente arricchito.

Tra gli altri usi si annoverano:

  • l'inclusione di sali di uranio nelle ceramiche e nei vetri, per colorare le prime e impartire una fluorescenza gialla o verde ai secondi;
  • la datazione delle rocce ignee ed altri metodi di datazione geologica quali la datazione uranio-torio e uranio-piombo attraverso la misura della concentrazione di 238U, la cui emivita è di circa 4,51 miliardi di anni;
  • l'acetato di uranile, UO2(CH3COO)2, trova impiego in chimica analitica; forma con il sodio un sale insolubile;
  • il nitrato di uranio è usato in fotografia;
  • in chimica l'uranio è utilizzato come catalizzatore in alcune reazioni;
  • i fertilizzanti fosfatici di origine minerale possono contenere quantità di uranio relativamente alte, se questo è presente come impurezza nei minerali di partenza;
  • l'uranio metallico trova uso in dispositivi a guida inerziale e nelle bussole giroscopiche.

In tutte queste applicazioni (tranne che per l'uso come combustibile nelle centrali nucleari) non è importante che si utilizzi uranio naturale oppure uranio impoverito. Ad ogni modo, il Dipartimento dell'Energia americano rileva che tutti gli impieghi civili dell'uranio non sono finora riusciti a ridurre in modo sostanziale le scorte di uranio impoverito accumulate negli ultimi decenni dalle centrali nucleari di tutto il mondo. Gran parte dell'uranio impoverito viene quindi dirottato sul settore militare oppure è stoccato in permanenza in depositi del sottosuolo.

[modifica] Applicazioni militari

Bomba nucleare
Bomba nucleare

La principale applicazione militare dell'uranio è, nella sua forma arricchita nell'isotopo 235U, come massa di reazione all'interno delle bombe atomiche o come innesco per le bombe termonucleari. La prima bomba atomica, Little Boy, venne realizzata nel contesto del Progetto Manhattan, durante gli anni della seconda guerra mondiale e venne sganciata nell'agosto del 1945 sulla città giapponese di Hiroshima (si veda Bombardamento atomico di Hiroshima e Nagasaki).

Va ricordato, inoltre, che parte dell'uranio arricchito prodotto nelle nazioni nucleari più avanzate viene utilizzato come combustibile per i reattori ospitati in navi e sottomarini da guerra, rappresentando di fatto un utilizzo indiretto di questo elemento per fini bellici.

Proiettile di uranio impoverito
Proiettile di uranio impoverito

L'altra importante applicazione militare dell'uranio si basa sul cosiddetto uranio impoverito, ovvero uranio in cui la percentuale di 235U è stata artificialmente ridotta (mediamente contiene lo 0,25-0,4% di 235U, vedi oltre nello stesso articolo). L'uranio è un metallo molto denso e pesante, e proprio per questo viene utilizzato per rendere le corazzature dei carri armati particolarmente resistenti e per costruire munizioni anticarro (al posto del più costoso e meno efficiente tungsteno).

Essendo la produzione di uranio impoverito strettamente collegata al processo di arricchimento dell'uranio naturale, del quale costituisce un sottoprodotto, solo gli Stati in grado di arricchire l'uranio possiedono notevoli quantità di uranio Impoverito. L'Italia non possiede scorte significative di questo materiale.

Un altro sottoprodotto importante con valore militare dell'uranio è il plutonio 239, che viene prodotto dalle reazioni nucleari che hanno luogo nella fertilizzazione del 238U contestualmente alla fissione del 235U all'interno dei reattori nucleari. Il plutonio viene utilizzato per costruire ordigni nucleari e come combustibile nei reattori nucleari.

[modifica] Storia

L'uso dell'uranio, sotto forma del suo ossido, risale ad almeno al 79 a.C.; risalgono ad allora alcuni manufatti in ceramica colorati di giallo per aggiunta dell'1% di ossido di uranio rinvenuti in scavi nella zona di Napoli.

L'uranio è stato scoperto nel 1789 dallo scienziato tedesco bavarese Martin Heinrich Klaproth, che lo individuò in un campione di pechblenda.

L'elemento prese il nome dal pianeta Urano, che fu scoperto otto anni prima dell'elemento.

L'uranio fu isolato come metallo nel 1841 da Eugene-Melchior Peligot ed è del 1850 il primo impiego industriale dell'uranio nel vetro, sviluppato dalla Lloyd & Summerfield di Birmingham, nel Regno Unito.

La radioattività dell'uranio fu osservata per la prima volta dal fisico francese Henri Becquerel nel 1896.

[modifica] Ricerca ed estrazione

Principali paesi estrattori di uranio
Principali paesi estrattori di uranio

L'esplorazione e l'estrazione di minerali radioattivi iniziò negli Stati Uniti al principio del XX secolo. I sali di radio, contenuti nei minerali dell'uranio, erano ricercati per il loro impiego in vernici fluorescenti da usarsi per quadranti di orologi ed altri strumenti, nonché per applicazioni mediche - rilvelatesi nei decenni successivi particolarmente insalubri.

La domanda di uranio crebbe durante la seconda guerra mondiale, durante la corsa delle nazioni in guerra alla realizzazione della bomba atomica. Gli Stati Uniti sfruttarono i loro giacimenti di uranio localizzati in numerose miniere di vanadio del sud-ovest ed inoltre acquistarono l'uranio dal Congo (all'epoca colonia belga) e dal Canada.

Le miniere del Colorado fornivano principalmente miscele di minerali di uranio e di vanadio (carnotite) ma, per via della segretezza applicata nel periodo bellico, solo quest'ultimo figurava pubblicamente come prodotto delle miniere. In una causa legale condotta molti anni più tardi, i lavoratori di quelle miniere si sono visti riconosciuti risarcimenti per le indennità loro dovute e mai pagate previste per l'estrazione di materiale radioattivo.

I minerali di uranio delle miniere americane non erano ricchi quanto quelli del Congo belga, ma venivano comunque estratti nello sforzo di raggiungere un'autosufficienza produttiva. Sforzi simili furono condotti dall'Unione Sovietica, anch'essa priva di scorte di uranio all'inizio del suo programma nucleare. In alcuni impianti in Europa e in Russia è attualmente in atto un processo di riarricchimento dell'uranio impoverito. In questi impianti un trattamento a centrifuga dell'uranio impoverito riduce ulteriormente la concentrazione di 235U in gran parte del materiale, producendo una piccola percentuale di uranio con contenuto "naturale" (0,71%) di 235U. L'uranio naturale così ottenuto può nuovamente essere inviato alle centrali nucleari per il processo di arricchimento.

[modifica] Ascesa, stagnazione e nuovo boom dell'estrazione dell'uranio - Costi

Miniera di uranio a Kakadu National Park in Australia
Miniera di uranio a Kakadu National Park in Australia

La ricerca dell'uranio nel mondo trovò un grande impulso all'inizio della guerra fredda; gli Stati Uniti, al fine di garantirsi adeguate forniture di uranio da destinare alla produzione di armi, crearono nel 1946 la Atomic Energy Commission (AEC), incaricata di esplorare potenziali giacimenti per conto dello stato e di intervenire sul prezzo di mercato dell'uranio. L'AEC, fissando un prezzo elevato per i minerali di uranio, contribuì ad un vero e proprio boom nei primi anni cinquanta.

Giacimenti furono scoperti nello Utah nel 1952, anche se la concentrazione di uranio era comunque inferiore a quella osservata in campioni provenienti dal Congo belga o dal Sudafrica: al picco dell'euforia mondiale per l'energia nucleare - negli anni cinquanta - furono anche presi in considerazione metodi per estrarre l'uranio e il torio dai graniti e dalle acque marine.

La domanda da parte dell'apparato militare statunitense iniziò a declinare negli anni sessanta e le scorte di uranio furono completate entro la fine del 1970; nel contempo iniziò ad emergere il mercato dell'uranio per usi civili, ovvero per la realizzazione delle centrali elettriche termonucleari.

Negli Stati Uniti tale mercato collassò nell'arco di un decennio, come risultato di diversi fattori concomitanti ,tra cui la crisi energetica, l'opposizione popolare e l'incidente alla centrale di Three Mile Island nel 1979, che portò ad una moratoria de facto dello sviluppo delle centrali nucleari.

Il prezzo dell'uranio nei due decenni successivi continuò a declinare, per una serie di fattori concomitanti. I principali fattori furono il disastro di Chernobyl e la crisi e la dissoluzione dell'Unione Sovietica. L'esplosione dell'impianto di Chernobyl ebbe un forte impatto psicologico in tutto il mondo, provocando una riduzione o un blocco totale nei progetti di costruzione di nuovi impianti nucleari. Negli ultimi anni di esistenza dell'Unione Sovietica, per far fronte alla crescente crisi economica, questo paese mise in vendita grosse quantità di ossido di uranio, in un mercato già saturo per gli scarsi investimenti provocati dall'incidenti di Chernobyl, contribuendo a deprimere ulteriormente i prezzi.

Nella seconda metà degli anni novanta, i trattati per la non proliferazione nucleare tra la Russia e gli Stati Uniti portarono all'accordo Megaton contro Megawatt (1995), che vide lo smantellamento di moltissime testate nucleari sovietiche e la vendita come combustibile dell'ossido di uranio da esse ricavabile. Il conseguente e ulteriore aumento dell'offerta ha prodotto un fortissimo ribasso nei prezzi fino alla fine del secolo.

Nonostante che in molti paesi Europei - Francia, Germania, Spagna, Svezia, Svizzera, Regno Unito - all'iniziale riduzione dei piani di sviluppo del nucleare civile sia in seguito corrisposta una nuova fase di costruzione e ammodernamento delle centrali nucleari, per lungo tempo l'offerta di combustibile nucleare ha fortemente ecceduto la domanda.

Dal 1981 i prezzi per l'ossido di uranio U3O8 registrati dal Dipartimento per l'Energia degli Stati Uniti sono stati in continuo calo fino all'anno 2000: da 32,90 $/lb di U3O8 del 1981 a 12,55 $/lb nel 1990 a meno di 10 $/lb nel 2000. Il minimo valore del prezzo dell'uranio si è raggiunto nel 2001 a meno di 7 $/lb[1].

Negli ultimi anni (2001-2006) la richiesta mondiale di uranio è fortemente aumentata. Le cause vanno ricercate nella massiccia costruzione di nuovi reattori nucleari (28 cantieri inaugurati tra il 2000 e il 2005, su un totale di 442 reattori esistenti nel 2006; l'AIEA prevede altri 168 nuovi cantieri reattori entro il 2020) e anche nell'accresciuta domanda energetica dei paesi che utilizzano energia nucleare (soprattutto da parte di Cina, India, Corea del Sud, Russia, Giappone e Stati Uniti), che negli ultimi anni è arrivata ad eccedere l'offerta. Per soddisfare la crescente domanda molti paesi consumatori e produttori hanno iniziato ad intaccare le cosiddette fonti secondarie di uranio, ossia le scorte accumulate in deposito nei decenni precedenti.

Come risultato il prezzo dell'uranio sul mercato mondiale ha subìto una forte impennata, passando dai 7 $/lb del 2001 al picco di 135 $/lb del 2007[2]. Al 2001 il prezzo dell'uranio incideva per il 5-7% sul totale dei costi riguardanti la produzione di energia nucleare.[3]

[modifica] Rischi associati all'estrazione

Dato che l'uranio emette radon, un gas radioattivo, nonché altri prodotti di decadimento altrettanto radioattivi, l'estrazione mineraria di uranio presenta pericoli ulteriori che si sommano a quelli già esistenti nell'attività del minatore. Le miniere di uranio che non siano "a cielo aperto" richiedono adeguati sistemi di ventilazione per disperdere il radon.

Durante gli anni cinquanta molti dei minatori statunitensi impiegati nelle miniere di uranio erano nativi Navajos, dato che molte delle miniere erano collocate nelle loro riserve. A lungo andare molti di essi svilupparono forme di cancro al polmone. Alcuni di loro e dei loro discendenti sono stati beneficiari di una legge che nel 1990 ha riconosciuto il danno loro arrecato.

[modifica] Tuballoy e Oralloy

Durante il lavoro del Progetto Manhattan, esigenze di segretezza fecero adottare i nomi di tuballoy e oralloy per riferirsi rispettivamente all'uranio naturale e all'uranio arricchito. Questi nomi sono ancora occasionalmente usati oggi.

[modifica] Composti

Yellowcake
Yellowcake

Il tetrafluoruro di uranio (UF4) è noto come "sale verde" ed è un prodotto intermedio nella produzione di esafluoruro di uranio.

Il concentrato di uranio viene detto Yellowcake. Prende questo nome dal colore e dalla scabrosità superficiale del materiale prodotto durante le prime operazioni minerarie, anche se i mulini odierni, lavorando ad alta temperatura, producono "yellowcake" di colori che vanno dal verde scuro al quasi nero.

Lo yellowcake contiene in genere dal 70% al 90% in peso di ossido di uranio (U3O8). Esistono altri ossidi, quali UO2 e UO3; il più stabile di tutti è U3O8, che in realtà viene considerato essere l'ossido misto UO2 · 2UO3.

Il diuranato di ammonio è un prodotto intermedio nella produzione di yellowcake ed ha un colore giallo brillante. Viene a volte confuso con lo stesso "yellowcake", ma non è solitamente la stessa cosa.

Il nitrato di uranile (UO2(NO3)2) è un sale di uranio solubile ed estremamente tossico.

[modifica] Disponibilità in natura

L'uranio è un elemento che si trova in natura, in basse concentrazioni, praticamente in tutte le rocce, in tutti i terreni e nelle acque. Viene considerato più abbondante dell'antimonio, del berillio, del cadmio, dell'oro, del mercurio, dell'argento, del tungsteno; ha circa la stessa abbondanza dell'arsenico e del molibdeno.

Si trova in molti minerali, come l'uraninite (o pechblenda, il minerale di uranio più comune), l'autunite, la carnotite, l'uranofano, la torbernite e la coffinite. Si possono riscontrare concentrazioni di uranio significative anche in alcune sostanze come depositi di rocce fosfatiche e minerali come la lignite e la sabbia di monazite in minerali madre ricchi di uranio (viene estratto commercialmente anche da queste fonti).

Si ipotizza che la principale fonte del calore che mantiene liquido il nucleo della Terra e il soprastante mantello provenga dal decadimento dell'uranio e dalle sue reazioni nucleari con il torio nel nucleo della terra, generando così la tettonica a zolle.

I minerali di uranio, perché l'estrazione mineraria di uranio sia remunerativa, devono contenere una concentrazione minima di ossido di uranio U3O8 che va dallo 0,05% al 0,2%.

[modifica] Produzione e distribuzione

L'uranio viene prodotto industrialmente per riduzione dei suoi alogenuri con metalli alcalini o alcalino-terrosi. Può anche essere prodotto per elettrolisi di KUF5 o UF4 sciolti in CaCl2 o NaCl fuso.

L'uranio metallico ad alta purezza viene ottenuto per decomposizione termica di alugenuri di uranio su un filamento rovente.

Da 1 kg di ossido di uranio si ricavano circa 840 g di uranio metallico adatto al processo di arricchimento.

Si stima (World Nuclear Association) che dai giacimenti dispersi in tutto il mondo si possano estrarre in totale circa 4,2 milioni di tonnellate di ossido di uranio. Allo stato attuale (Cameco, stime 2005), la produzione mondiale annua di uranio metallico si aggira intorno alle 41.600 tonnellate.

L'uranio è distribuito sul pianeta in maniera poco uniforme; anche se giacimenti di dimensioni minori possono essere trovati praticamente ovunque, tre soli paesi (l'Australia, il Canada e il Kazakhstan) contengono circa il 58% delle riserve note. Questi tre paesi sono anche i principali produttori di uranio (dati 2006).

L'Australia possiede ampi giacimenti (formati soprattutto da carnotite), che rappresentano circa il 28% delle riserve del pianeta. La sua produzione è aumentata di quasi il 40% negli ultimi 4 anni (9519 tonnellate di uranio metallico estratte nel 2005), quasi raggiungendo il Canada. Il più grande singolo deposito di uranio del mondo è presso la Olympic Dam Mine nello stato dell'Australia Meridionale. In Australia si trovano anche la seconda e la terza miniera di uranio per estrazione (la miniera Ranger, che è la maggiore miniera di uranio a cielo aperto del mondo, e la già citata Olympic Dam). L'Australia ha in progetto di triplicare l'estrazione di uranio dalla Olympic Dam nei prossimi anni.

Il Kazakhstan ha aumentato del 55% l'estrazione di uranio negli ultimi 4 anni, passando dal quinto al terzo posto nei produttori dal 2002 al 2006 (4357 tonnellate di uranio metallico estratte nel 2005). Attualmente è in progetto l'apertura di 7 nuove miniere nel sud del paese; questa nazione aspira a diventare il primo produttore mondiale entro il 2010. Si stima che il territorio del Kazakhstan contenga riserve note di ossido di uranio per 750.000 tonnellate, il 18% del totale, e che altrettante siano ancora da scoprire nel sottosuolo di questo paese.

Il Canada possiede ricchi giacimenti in Saskatchewan (formati soprattutto da pechblenda costituiscono il 12% delle riserve mondiali), dove dalle tre miniere del McArthur River, del Rabbit Lake e del McClean Lake si estrae circa il 28% della produzione mondiale (11628 tonnellate nel 2005, più o meno costante negli ultimi anni). La miniera del McArthur river è anche la più grande miniera di uranio del mondo. Le altre due miniere sono relativamente recenti e si ritiene che la loro produzione dovrebbe aumentare significativamente nei prossimi anni. Inoltre il Canada dovrebbe aprire due nuove miniere (Cigar Lake e Midwest) nel 2007. Questa sovrapproduzione unita al controllo governativo sulla produzione ha un forte peso nel determiare il prezzo dell'uranio sui mercati internazionali.

Gli altri principali paesi estrattori (dati 2005) sono la Russia (4% delle riserve mondiali e 3431 tonn. estratte nel 2005), la Namibia (6% riserve e 3147 tonn. estratte con la miniera a cielo aperto di Rossing, la quarta del mondo), il Niger (2% riserve e 3093 tonn.), l'Uzbekistan (4% riserve e 2300 tonn.) e gli Stati Uniti (3% riserve e 1039 tonn., concentrati negli stati del Wyoming e del Nebraska).

Giacimenti importanti e poco sfruttati si trovano in Sudafrica (che ha l'8% delle riserve mondiali ed ha appena iniziato a sfruttarle con il sistema del reattore a letto di ciottoli), in Brasile (4% delle riserve) e in Mongolia (2% delle riserve). I depositi di minerali di uranio scoperti più di recente (2005) si trovano in Canada, India centrale, Nigeria e Zimbabwe.

Esplorazioni e prospezioni per individuare nuovi giacimenti sono in corso in Canada, Sudafrica, Kazakhstan, Mongolia e nella Repubblica Democratica del Congo.

In Italia è stata scoperta negli anni '50 una piccola miniera di uranio nei pressi di Novazza (a circa 40km a nord est di Bergamo), da cui si ritiene che si possano ricavare in tutto circa 1300 tonnellate di ossido di uranio. La miniera non è mai stata sfruttata (qualche progetto elaborato negli anni '70 non è andato a buon fine), anche se si pensa che dal 2007 dovrebbero iniziare alcune valutazioni preliminari per decidere se l'estrazione del minerale sia conveniente.

[modifica] Precauzioni

Simboli di rischio chimico

molto tossico


frasi R: R 26/28-33-53
frasi S: S 1/2-20/21-45-61


Le sostanze chimiche vanno manipolate con cautela
Avvertenze

Tutti i composti e gli isotopi dell'uranio sono tossici e radioattivi ad un livello potenzialmente letale.

A dosi non letali, la tossicità chimica dell'uranio può comunque produrre danni all'organismo: inalato in genere sotto forma di ossido (altamente solubile), l'uranio si discioglie nei liquidi delle mucose polmonari, ed entra rapidamente nel sangue. Nonostante gran parte dell'uranio assorbito venga espulso con le urine, la parte che non viene eliminata si accumula nelle ossa e soprattutto nei reni; le conseguenze di questo accumulo producono effetti tipici dell'avvelenamento da metalli pesanti: dermatiti, gravi degenerazioni dei reni, necrosi delle arterie.

I danni da radiazione sono permanenti; l'uranio fissato nelle ossa e nei vari organi attraversati irraggia le cellule circostanti, con effetti particolarmente gravi sul midollo osseo. Inoltre le particelle inalate che non finiscono nel sangue possono restare nelle vie respiratorie per lungo tempo.

L'uranio non viene assorbito attraverso la pelle; le particelle alfa che emette non sono in grado di attraversare la pelle, ciò rende l'uranio esterno al corpo molto meno pericoloso di quello inalato o ingerito.

Una persona può esporsi all'uranio sia inalandone le polveri nell'aria che ingerendolo con il cibo e con l'acqua; si calcola che l'assunzione media quotidiana di uranio sia compresa tra 0,7 e 1,1 microgrammi.

Persone che vivono in aree vicine a poligoni nucleari o a miniere che ne lavorano i minerali possono essere esposte a livelli di radioattività più elevati per via della produzione di polveri sottili e radon che vengono trasportati dai venti nelle zone circostanti.

Per la stessa ragione, senza un'adeguata ventilazione i lavoratori delle miniere sono esposti ad un elevato rischio di contrarre il cancro o altre malattie polmonari. Anche le acque usate dalle miniere per il trattamento del minerale possono diventare veicolo di contaminazione per le aree vicine. Ricerche condotte nel 2005 dall'Arizona Cancer Center su sollecitazione della Nazione Navajo, in cui sono ubicate alcune miniere di uranio, hanno scoperto capacità mutagene di questo elemento, che è in grado di penetrare nel nucleo cellulare e legarsi chimicamente al DNA, alterandolo e provocando errori nella produzione delle proteine, e portare le cellule in stato precanceroso.

Gli edifici costruiti su depositi di uranio (siano essi giacimenti o depositi di scorie) rischiano una elevata esposizione al radon che da essi si libera.

L'uranio metallico, finemente suddiviso, può incendiarsi spontaneamente.

[modifica] Citazioni letterarie

[modifica] Note

  1. ^ Serie storica dei prezzi dell'uranio a cura della Ux Consulting Company, in dollari correnti e normalizzata rispetto al valore del dollaro nel 2007
  2. ^ Dati finanziari tratti da http://www.cameco.com/investor_relations/ux_history/historical_ux.php
  3. ^ Parere del comitato consultivo dell'Agenzia di approvvigionamento Euratom sul Libro verde della Commissione "Verso una strategia europea di sicurezza dell'approvvigionamento energetico", G.U. n. C 330 del 24/11/2001 pag. 0015 - 0020

[modifica] Voci correlate

[modifica] Altri progetti

[modifica] Collegamenti esterni

La tavola periodica degli elementi








Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com