See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Matrice transposée - Wikipédia

Matrice transposée

Un article de Wikipédia, l'encyclopédie libre.

La matrice transposée (on dit aussi la transposée) d'une matrice A \in \mathcal{M}_{n,m}(\mathbb{K}) est la matrice notée {}^t \! A \in \mathcal{M}_{m,n}(\mathbb{K}) (parfois aussi notée AT ou {}^{tr} \! A), obtenue en échangeant les lignes et les colonnes de A.

La première notation, avec le t avant le nom de la matrice, est la notation utilisée en France, celle où le t se situe après le nom de la matrice à transposer est une notation américaine. Il est donc préférable de savoir d'où proviennent les exercices !

Si B = {}^t \! A, alors \forall {(i,j) \in [\![1;m]\!]\times[\![1;n]\!]}, b_{i,j} = a_{j,i}\,.

Exemple : A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} alors {}^t \! A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}

[modifier] Propriétés

  • La transposée {}^t:\mathcal{M}_{n,m}(\mathbb{K}) -> \mathcal{M}_{m,n}(\mathbb{K}) est un isomorphisme ( application bijective )
  • La transposée de la somme de deux matrices est égale à la somme des transposées de ces deux matrices : {}^t(A + B) = {}^t\!A + {}^t\!B
  • La transposée du produit de deux matrices est égale au produit inversé des transposées de ces deux matrices : {}^t(A . B) = {}^t\!B . {}^t\!A
  • La transposée de l'inverse d'une matrice carrée est égale à l'inverse de la transposée de cette même matrice : {}^t(A^{-1}) = ({}^t\! A)^{-1}
  • Si A désigne une matrice carrée de dimension n et B sa transposée, alors \forall {i \in [\![1;n]\!]}, b_{i,i} = a_{i,i}\,.
  • Une matrice égale à sa transposée est appelée matrice symétrique.

[modifier] Interprétation : dualité

Si A représente une application linéaire par rapport à deux bases, alors sa transposée {}^t \! A représente la matrice de la transposée de l'application par rapport aux bases duales (voir espace dual).

Dans le cadre des espaces euclidiens, si A représente une application linéaire par rapport à deux bases orthonormales, alors sa transposée {}^t \! A représente la matrice de l'application adjointe.

[modifier] Voir aussi


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -