수학
위키백과 ― 우리 모두의 백과사전.
수학(數學)은 양, 구조, 공간, 변화 등의 개념을 다루는 학문이다. 현대 수학은 형식 논리를 이용해 공리로 구성된 추상적 구조를 연구하는 학문으로 여겨지기도 한다. 수학은 그 구조와 발전 과정에서 자연과학에 속하는 물리학을 비롯한 학문들과 깊은 연관을 맺고 있으나, 과학의 분야들과는 달리 자연계에서 관측되지 않는 개념들에 대해서까지 이론을 일반화 및 추상화시킬 수 있다는 차이가 있다. 수학자들은 그러한 개념들에 대해 추측을 하고, 적절하게 선택된 정의와 공리로부터의 엄밀한 연역을 통해 추측들의 진위를 파악하려 한다.[1]
수학은 숫자 세기, 계산, 측정 및 물리적 대상의 모양과 움직임을 추상화하고 이에 논리적 추론을 적용하여 나타났다. 이런 기본 개념들은 고대 이집트, 메소포타미아, 고대 인도, 고대 중국 및 고대 그리스의 수학책에서 찾아볼 수 있으며, 유클리드의 원론에서는 엄밀한 논증이 발견된다. 이런 발전은 그 뒤로 계속되어, 16세기의 르네상스에 이르러서는 수학적 발전과 과학적 발견들의 상호작용이 일어나 혁명적인 연구들이 진행되며 인류 문명에 큰 영향을 미치게 되었고, 이는 현재까지도 계속되고 있다.[2]
오늘날 수학은 자연과학, 공학, 의학뿐만 아니라 경제학 등의 사회과학에서도 중요한 도구로서 사용된다. 수학을 이런 분야들에 적용한 응용수학은 그 결과로서 수학 자체의 발전을 이끌고 새로운 분야들을 낳았다. 응용이 아닌 수학 자체의 아름다움과 재미를 추구하며 연구하는 것을 순수수학이라 하는데, 긴 시간이 지난 뒤에 순수수학적 연구를 다른 분야에 응용할 방법이 발견된 경우도 많다.[3]
목차 |
[편집] 역사
- 이 부분의 본문은 수학의 역사입니다.
인류의 역사와 더불어 시작되었다고 할 만큼 오래 되었다. 교역 ·분배 ·과세 등 인류의 사회 생활에 필요한 모든 계산을 수학이 담당해 왔고, 농경생활에 필수적인 천문 관측과 달력의 제정, 토지의 측량 또한 수학이 직접적으로 관여한 분야이다. 고대 수학을 크게 발전시킨 나라로는 이집트, 인도, 그리스, 중국 등이 있다.
[편집] 17세기
17세기에는 요하네스 케플러, 존 네이피어, 르네 데카르트 등이 새로운 분야를 개척하였다. 《방법서설》을 지은 철학자 데카르트는 해석기하학의 창시자로 불후의 이름을 남기고 있다. 이것은 기하학을 대수학과 결부시켜 대수학적 방법으로 기하학적 성질을 탐구하는 것으로, 후에 고트프리트 라이프니츠의 미적분 발견에 영향을 끼쳤다. 아이작 뉴턴과 라이프니츠는 독립적으로 미적분학을 창시하고 근대해석학을 만들었다. 기하학, 대수학의 세계에서 해석학으로 비약한 수학은 물리학에 큰 영향을 끼쳤다. 뉴턴은 1671년 미적분학을 체계화하였으며 1687년 프린키피아를 간행하였다. 후에 미적분학을 누가 먼저 창안하였는지에 대한 논쟁이 있었으나 현재는 두 사람이 독립적으로 그 업적을 이루었다는 것이 밝혀졌다. 참고로 라이프니츠는 기호화에 큰 공적을 남겼다.
[편집] 18세기
18세기는 17세기에 창설된 해석학이 발전한 시대이다. 스위스의 베르누이 일가와 프랑스의 수학자들의 활약이 눈부시다. 요한 베르누이의 제자인 레온하르트 오일러는 뛰어난 계산력과 독창력으로 해석학의 면목을 일신하였다. 그 외 오일러와 더불어 변분학을 창시한 라그랑주, 천체의 운동을 수학적으로 규명한 피에르시몽 라플라스, 타원함수론의 선구자였던 르장드르, 화법기하학을 창시한 몽주등이 있다.
[편집] 19세기
[편집] 현대
[편집] 세부 분야
수학의 각 분야들은 상업에 필요한 계산을 하기 위해, 숫자들의 관계를 이해하기 위해, 토지를 측량하기 위해, 그리고 천문학적 사건들을 예견하기 위해 발전되어왔다. 이 네 가지 목적은 대략적으로 수학이 다루는 대상인 양, 구조, 공간 및 변화에 대응되며, 이들을 다루는 수학의 분야를 각각 산술, 대수학, 기하학, 해석학이라 한다. 또한 이 밖에도 근대 이후에 나타난 수학기초론과 이산수학 및 응용수학 등이 있다.
[편집] 산술
산술은 자연수와 정수 및 이에 대한 사칙연산에 대한 연구로서 시작했다. 수론은 이런 주제들을 보다 깊게 다루는 학문으로, 그 결과로는 페르마의 마지막 정리 등이 유명하다. 또한 쌍둥이 소수 추측과 골드바흐 추측 등을 비롯해 오랜 세월동안 해결되지 않고 남아있는 문제들도 여럿 있다.
수의 체계가 보다 발전하면서, 정수의 집합을 유리수의 집합의 부분집합으로 여기게 되었다. 또한 유리수의 집합은 실수의 집합의 부분집합이며, 이는 또다시 복소수 집합의 일부분으로 볼 수 있다. 여기에서 더 나아가면 사원수와 팔원수 등의 개념을 생각할 수도 있다. 이와는 약간 다른 방향으로, 자연수를 무한대까지 세어나간다는 개념을 형식화하여 서수의 개념을 얻으며, 집합의 크기 비교를 이용하여 무한대를 다루기 위한 또다른 방법으로는 기수의 개념도 있다.
[편집] 대수학
[편집] 기하학
[편집] 해석학
[편집] 수학기초론 관련 분야
[편집] 이산수학
[편집] 응용수학
[편집] 주석
[편집] 참고자료
- Eves, Howard, An Introduction to the History of Mathematics, Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
- Jourdain, Philip E. B., The Nature of Mathematics, in The World of Mathematics, James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.
- Peterson, Ivars, Mathematical Tourist, New and Updated Snapshots of Modern Mathematics, Owl Books, 2001, ISBN 0-8050-7159-8.
[편집] 바깥 고리
위키미디어 공용에 관련 미디어 자료가 있습니다: |
- (주)수학사랑
- 수학클럽(Mathculb)
- 대한수학회(KMS)
- 한국수학사학회
- Mathnet
- 전국수학교사모임
- 미적분 카페
- KAIST 수학문제연구회
- (英) Mathworld
- The MacTutor History of Mathematics archive