See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Matematika - Wikipedija

Matematika

Izvor: Wikipedija

Matematika (od grčkog mathema - znanost) je znanost koja izučava aksiomatski definirane apstraktne strukture koristeći matematičku logiku.

Sadržaj

[uredi] O matematici; povijest i razvoj

Matematika se počela razvijati prije više tisuća godina (okvirno), još u doba starih Egipćana. Poslije se proširila u Grčku i grčko-rimski svijet. Osim toga, aktivno se razvijala u Kini i Japanu. Razvila se iz potrebe da se obavljaju proračuni u trgovini, mjerenja zemljišta i predviđaju astronomski događaji. Ove tri primjene mogu se dovesti u vezu s grubom podjelom matematike na izučavanje strukture, prostora i izmjena.

Fundamentalnu knjigu u razvoju matematike, "Elementi", je napisao Euklid. Knjiga ima 12 svezaka. Tu je prva knjiga pisana stilom koji je danas poznat kao (egzaktni) matematički:

definicija - aksiom - teorem - dokaz

Knjiga je zbog tadašnjeg nedostatka simbola pisana u potpunosti riječima, što danas, naravno, nije slučaj. Proučavanje geometrijskih prostora je, u pravom smislu te riječi, počelo kada je Euklid postavio svojih pet aksioma o prostoru. Takav prostor se danas zove euklidski prostor, no tokom mnogo godina su se razvili i neeuklidski prostori te još mnogi drugi. Matematika izniče gdje god se pojavljuju teški problemi vezani za veličinu, strukturu, prostor ili promjenu. U početku; trgovina i mjerenje zemljišta, kasnije; astronomija, a danas; sveopće! Matematika se uči u osnovnim i srednjim školama kao obavezan predmet. Također i veliki dio fakulteta ima obavezne i izborne matematičke kolegije. [1] Godišnje se prijavi oko 200 000 novih matematičkih teorema; na raznim razinama znanja i stručnosti postoji preko 1600 časopisa koji objavljuju matematičke materijale. Današnja matematika je podosta napredna, u svim smjerovima, a ljudi koji se bave modernom matematikom su usko specijalizirani i nečesto bave stvarima koje su nemamtematičarima izvanrazumske. Ipak, postoje goleme primjene! Krajem četrdesetih godina prošlog stoljeća John von Neumann je procijenio da bi obrazovani matematičar mogao raspolagati oko 10% osnovnih znanja cijele matematike do tada poznate. Do danas se taj postotak značajno smanjio. Za razliku od rane, istočnjačke i zapadnjačke izolacije, današnja matematika je ujedinjena.


[uredi] Gruba podjela matematike

Osnove matematike sadrže izučavanje strukture, prostora i promjenu.

[uredi] Strukture

Izučavanje strukture počinje s brojevima, u početku s prirodnim brojevima i cijelim brojevima.

Skup prirodnih brojeva = N

Skup prirodnih brojeva i 0 = N0

Skup cijelih brojeva = Z

Skup racionalnih brojeva = Q

Skup iracionalnih brojeva = I

Skup realnih brojeva = R

U = Unija (za skupove zbrajanje)

N U 0 = N0

N0 U negativni brojevi = Z

Z U razlomci i decimalni brojevi = Q

Q U I = R

Osnovna pravila za aritmetičke operacije su definirana u osnovnoj algebri, a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednadžbi je dovelo do razvoja apstraktne algebre, koja između ostalog izučava prstenove i polja, strukture što poopćuju svojstva koja posjeduju brojevi.

Fizikalno važan koncept vektora i matrica se proučava u linearnoj algebri.

[uredi] Prostor

Proučavanje prostora je počelo s geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširilo na neeuklidske geometrije, koje imaju centralnu ulogu u općoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Nadalje i apstraktni vektroski, unitarni, metrički i normirani prostori. Teorija grupa izučava koncept simetrije, i predstavlja vezu u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta.

[uredi] Promjene

Razumijevanje i opisivanje promjena mjerljivih varijabli je glavna značajka prirodnih znanosti, i diferencijalni (infinitezimalni) račun je razvijen u te svrhe. Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, a pritom razvijene metode izučavaju se u diferencijalnim jednadžbama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, a detaljno izučavanje njihovih svojstava i funkcija je predmet matematičke analize. Zbog unutrašnjih, matematičkih, razloga uveden je koncept kompleksnih brojeva, koji je glavni predmet izučavanja kompleksne analize. Funkcionalna analiza je usredotočena na n-dimenzionalne prostore funkcija postavljajući time neke od primjenjivih osnova i za izučavanje kvantne mehanike.

[uredi] Napomena

Radi razjašnjavanja i izučavanja osnova matematike, razvijena su područja teorija skupova, matematička logika i teorija modela.

Aritmetika daje važnost brojevima, algebra rješavanju jednadžbi, dok geometrija objašnjava osobine i odnose figura u prostoru. [2] Matematika bi se mogla okarakterizirati kao čvrsto stablo u rastu; sa deblom, granama i lišćem.


[uredi] Primijena matematike

Danas se matematika jako razvila i ima primjene u mnogo grana, kako prirodnih, tako i društvenih znanosti. Važna grana primijenjene matematike je Statistika (stohastička matematika), koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja, a diskretna matematika je zajedničko ime za više grana matematike koja se velikim dijelom koriste kao alati u računarskim znanostima. Razvijena je i matematička teorija računarstva, kao i niz drugih interdisciplinarnih grana.


[uredi] Kategorizacija

Slijedi kategorizacija po nekim od istaknutijih grana matematike:

[uredi] Veličine

1, 2, 3\,\! -2, -1, 0, 1, 2\,\!  -2, \frac{2}{3}, 1.21\,\! -e, \sqrt{2}, 3, \pi\,\! 2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
Prirodni brojevi Cijeli brojevi Racionalni brojevi Realni brojevi Kompleksni brojevi


[uredi] Počela i filozofija

 p \Rightarrow q \,
Matematička logika Teorija skupova Teorija kategorija


[uredi] Strukture

Teorija brojeva Apstraktna algebra Teorija grupa Druge teorije


[uredi] Prostor

Geometrija Trigonometrija Diferencijalna geometrija Topologija Fraktalna geometrija


[uredi] Stanja, promjena, analiza

Matematička analiza Vektorska analiza Diferencijalne jednadžbe Dinamički sustavi Teorija kaosa


[uredi] Diskretna matematika

\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix}
Kombinatorika Teorija izračunljivosti Kriptografija Teorija grafova


[uredi] Primjenjena matematika


[uredi] Matematika i ostale znanosti

Također se prilično često pokazalo da razvoj matematike ne mora nužno pratiti razvoj fizike ili neke druge "konkretnije" znanosti, to jest matematika se može razvijati "sama za sebe", a primjena onoga što se dobije već se nađe tokom godina razvoja drugih znanosti (primjeri za to nisu odviše jednostavni, ali, recimo, Riemannov prostor je jedan primjer za to - razvio se sam po sebi, a primjenu je našao tek u teoriji relativnosti)


[uredi] Matematika u citatima

  • "Ne bi li se muzika mogla opisati kao matematika osjećaja, a matematika kao muzika razuma? Njihov duh je isti. Tako muzičar osjeća matematiku, a matematičar misli muziku. Jedna će pojačati osjećaj drugoj kad zasja ljudski um podignut u savršenstvo.", Vladimir Devidé
  • "Matematika nije nipošto dosadna ili bez mašte, već naprotiv, poput plemenite djevojke koja uzvraća ljubav onom tko je voli i razumije", Vladimir Devidé
  • "Svim ljudima nisu sve stvari potrebne, ali je račun ne samo svima nego i svakome jako potreban. Tko računati ili barem brojiti ne zna, mora se izbrisati iz broja svih ljudi, inače nema prijateljstva među trgovcima, ni ljubavi među susjedima, ni sluge u općini, niti pravednost u pravdi stalno stanovati može!", Platon
  • "Matematika je simbol naše intelektualne snage i jamstva da će se ljudski um uvijek boriti za uzvišene ciljeve", Danilo Blanuša
  • "Znanje kojem teži geometrija je znanje o vječnome.", Platon


[uredi] Utjecajni matematičari

Pitagora - Eratosten - Arhimed - Euklid - Rene Descartes - Isaac Newton - Gottfried Wilhelm Leibniz - Augustin Louis Cauchy - Leonhard Euler - Charles Fourier - Laplace - Karl Friedrich Gauss - Lobačevski - Niels Henrik Abel - Bernhard Riemann - Paul Erdös - Benoit B. Mandelbrot


[uredi] Utjecajni hrvatski matematičari

Marin Getaldić, Ruđer Bošković, Stjepan Gradić, Danilo Blanuša, William Feller, Svetozar Kurepa, Sibe Mardešić


[uredi] Izvori

  1. Matematika je znanost tradicionalno povezana s tehničkim znanostima i fizikom. Zadnjih smo desetljeća svjedoci prodora matematike u ekonomiju, medicinu i ostale znanosti. Tome treba pridodati i nagli razvoj informatičkih tehnologija u koje je matematika uključena od samih početaka.
  2. Matematika se gradi i na samoj sebi. Geometrija na aritmetici i algebri; na njima diferencijalni i integralni račun. Topologija je pak izdanak geometrije, teorije skupova i algebre. Diferencijalne jednadžbe se grade na diferencijalnom i integralnom računu, topologiji i algebri.
Drugi jezici


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -