We provide Linux to the World

ON AMAZON:



https://www.amazon.com/Voice-Desert-Valerio-Stefano-ebook/dp/B0CJLZ2QY5/



https://www.amazon.it/dp/B0CT9YL557

We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Relativitätstheorie – Wikipedia

Relativitätstheorie

aus Wikipedia, der freien Enzyklopädie

Die Relativitätstheorie befasst sich mit der Struktur von Raum und Zeit sowie mit dem Wesen der Gravitation. Sie besteht aus zwei maßgeblich von Albert Einstein geschaffenen physikalischen Theorien, der 1905 veröffentlichten speziellen Relativitätstheorie und der 1916 abgeschlossenen allgemeinen Relativitätstheorie. Die spezielle beschreibt das Verhalten von Raum und Zeit aus der Sicht von Beobachtern, die sich relativ zueinander bewegen, und die damit verbundenen Phänomene. Darauf aufbauend führt die allgemeine Relativitätstheorie die Gravitation auf eine Krümmung von Raum und Zeit zurück, die unter anderem durch die beteiligten Massen verursacht wird.

Die Relativitätstheorie hat das Verständnis von Raum und Zeit revolutioniert und Naturzusammenhänge aufgedeckt, die sich der klassischen Anschauung entziehen. Die betreffenden Vorgänge und Eigenschaften lassen sich jedoch mathematisch präzise beschreiben und sind experimentell bestens bestätigt.

Die Relativitätstheorie stellt zusammen mit der Quantentheorie die beiden Säulen des Theoriengebäudes der Physik dar. Das heutige Standardmodell der Physik beruht auf der Vereinigung der speziellen Relativitätstheorie mit der Quantentheorie in einer Quantenfeldtheorie. Eine Quantentheorie, die auch die allgemeine Relativitätstheorie berücksichtigt, bezeichnet man als Quantengravitation. Die Suche nach einer solchen Theorie zählt zu den größten Herausforderungen der physikalischen Grundlagenforschung. Sowohl die Relativitätstheorie als auch die Quantentheorie enthalten ihren Vorgänger, die newtonsche Physik, als Grenzfall und erfüllen damit das sogenannte Korrespondenzprinzip.

In diesem Artikel werden die grundlegenden Strukturen und Phänomene lediglich zusammenfassend aufgeführt. Für Erläuterungen und Details siehe die Artikel spezielle Relativitätstheorie und allgemeine Relativitätstheorie sowie die Verweise im Text. Zum Begriff der Relativität als solchem siehe Relativität.

Inhaltsverzeichnis

Die spezielle Relativitätstheorie

Hauptartikel: Spezielle Relativitätstheorie

Relativität von Raum und Zeit

Die beiden folgenden Feststellungen lassen sich als Axiome der Relativitätstheorie interpretieren, aus denen alles Weitere hergeleitet werden kann:

Beide Beobachter messen für die Geschwindigkeit des Lichtes denselben Zahlenwert, obwohl der linke sich bewegt.
Beide Beobachter messen für die Geschwindigkeit des Lichtes denselben Zahlenwert, obwohl der linke sich bewegt.
  • Messen verschiedene Beobachter die Geschwindigkeit eines Lichtstrahls relativ zu ihrem Standort, so kommen sie unabhängig von ihrem eigenen Bewegungszustand zum selben Ergebnis. Dieses sogenannte Prinzip von der Konstanz der Lichtgeschwindigkeit ist mit unserem Alltagsverständnis von Raum und Zeit nicht erklärbar, sondern erscheint paradox.
  • Die physikalischen Gesetze haben für alle Beobachter, die sich mit konstanter Geschwindigkeit bewegen, das heißt keiner Beschleunigung unterliegen, dieselbe Gestalt. Diesen Umstand nennt man Relativitätsprinzip. Man spricht von Inertialsystemen, in denen sich diese Beobachter befinden.

Zur Auflösung des obigen scheinbaren Paradoxons müssen intuitive Vorstellungen von einem absoluten Raum und einer absoluten Zeit aufgegeben werden: Raum- und Zeitangaben sind in der Relativitätstheorie keine universell gültigen Ordnungsstrukturen, sondern der räumliche und zeitliche Abstand zweier Ereignisse und damit auch ihre Gleichzeitigkeit werden von Beobachtern mit verschiedenen Bewegungszuständen unterschiedlich beurteilt. Die Frage, wer die Situation korrekt beschreibt, ist prinzipiell nicht zu beantworten und daher sinnlos. Bewegte Objekte erweisen sich im Vergleich zum Ruhezustand in Bewegungsrichtung als verkürzt und bewegte Uhren als verlangsamt. Diese Längenkontraktion und Zeitdilatation lassen sich vergleichsweise anschaulich anhand von Minkowski-Diagrammen und anhand des bekannten Zwillingsparadoxons nachvollziehen. In der mathematischen Formulierung ergeben sie sich aus der Lorentz-Transformation, die den Zusammenhang zwischen den Raum- und Zeitkoordinaten der verschiedenen Beobachter beschreibt. Diese Transformation lässt sich direkt aus den beiden obigen Axiomen und der Annahme, dass sie linear ist, herleiten.

Alle diese Phänomene machen sich erst bei Geschwindigkeiten bemerkbar, die im Vergleich zur Lichtgeschwindigkeit ins Gewicht fallen, so dass sie im Alltag nicht auffallen.

Äquivalenz von Masse und Energie

Hauptartikel: Äquivalenz von Masse und Energie

Einem System mit der Masse m lässt sich auch im unbewegten Zustand eine Energie E zuordnen, und zwar nach

E = m \cdot c^2

wobei c die Geschwindigkeit des Lichtes ist. Diese Formel ist eine der berühmtesten in der Physik. Oft wird irreführend behauptet, sie habe die Entwicklung der Atombombe ermöglicht. Richtig ist, dass damit die Wirkungsweise der Atombombe nicht erklärt werden kann. Allerdings konnte schon 1939 kurz nach der Entdeckung der Kernspaltung mit dieser Formel und den schon bekannten Massen der Atome durch Lise Meitner die enorme Freisetzung von Energie berechnet werden.[1] Diese Massenabnahme tritt auch bei chemischen Reaktionen auf, war jedoch für die damaligen Messmethoden zu klein, anders als im Fall von Kernreaktionen.

Vereinigung von Raum und Zeit zur Raumzeit

Hauptartikel: Raumzeit

Raum und Zeit erscheinen in den Grundgleichungen der Relativitätstheorie formal weitgehend gleichwertig nebeneinander und lassen sich daher zu einer vierdimensionalen Raumzeit vereinigen. Der Umstand, dass Raum und Zeit überhaupt als unterschiedliche Phänomene in Erscheinung treten, lässt sich letztlich auf ein einziges Vorzeichen zurückführen, durch das sich die Art und Weise, wie ein Abstand im euklidischen Raum definiert wird, von der Bestimmung des Abstands in der vierdimensionalen Raumzeit unterscheidet. Aus gewöhnlichen Vektoren im dreidimensionalen Raum werden dabei sogenannte Vierervektoren.

Lichtgeschwindigkeit als Grenze

Kein Objekt und keine Information kann sich schneller bewegen als das Licht im Vakuum. Nähert sich die Geschwindigkeit eines materiellen Objektes der Lichtgeschwindigkeit, so strebt der Energieaufwand für eine weitere Beschleunigung über alle Grenzen. Zum Erreichen der Lichtgeschwindigkeit müsste unendlich viel Energie aufgebracht werden.

Dieser Umstand ist eine Folge der Struktur von Raum und Zeit und keine Eigenschaft des Objekts, wie beispielsweise eines lediglich unvollkommenen Raumschiffes. Könnte sich ein Objekt mit Überlichtgeschwindigkeit von A nach B bewegen, so könnte man immer Beobachter finden, die eine Bewegung von B nach A wahrnehmen würden, wiederum ohne dass die Frage, wer die Situation korrekt beschreibt, einen Sinn gäbe. Das Kausalitätsprinzip wäre dann verletzt, da die Reihenfolge von Ursache und Wirkung nicht mehr definiert wäre. Ein solches Objekt würde sich übrigens für jeden Beobachter mit Überlichtgeschwindigkeit bewegen.

Das Relativitätsprinzip

Aus dem Relativitätsprinzip folgt unmittelbar, dass es keine Möglichkeit gibt, eine absolute Geschwindigkeit eines Beobachters im Raum zu ermitteln und damit ein absolut ruhendes Bezugssystem zu definieren. Ein solches Ruhesystem müsste sich in irgendeiner Form von allen anderen unterscheiden im Widerspruch zum Relativitätsprinzip, wonach die Gesetze der Physik in allen Bezugssystemen dieselbe Gestalt haben. So scheiterten auch alle entsprechenden Versuche wie beispielsweise das berühmte Michelson-Morley-Experiment von 1887, mit dem man die Existenz eines Äthers als Träger elektromagnetischer Wellen nachweisen wollte. Würde ein solcher Äther als starres Gebilde den Raum füllen, dann würde er ein Bezugssystem definieren, in dem die physikalischen Gesetze eine besonders einfache Form hätten.

Das Relativitätsprinzip an sich ist wenig spektakulär, denn es gilt auch für die newtonsche Mechanik. Es schien jedoch vor den Entdeckungen Einsteins den Gesetzen der Elektrodynamik zu widersprechen. Durch die Aufgabe der konventionellen Vorstellungen von Raum und Zeit gelang es Einstein, den scheinbaren Widerspruch aufzulösen. Nicht zufällig waren es Experimente und Überlegungen zur Elektrodynamik, die zur Entdeckung der Relativitätstheorie führten. So lautete der unscheinbare Titel der einsteinschen Publikation von 1905, die die spezielle Relativitätstheorie begründete, „Zur Elektrodynamik bewegter Körper“.

Magnetfelder in der Relativitätstheorie

Die Existenz magnetischer Kräfte ist untrennbar mit der Relativitätstheorie verknüpft. Eine isolierte Existenz des coulombschen Gesetzes für elektrische Kräfte wäre nicht mit der Struktur von Raum und Zeit verträglich. So sieht ein Beobachter, der relativ zu einem System statischer elektrischer Ladungen ruht, kein Magnetfeld, anders als ein Beobachter, der sich relativ zu ihm bewegt. Übersetzt man die Beobachtungen des ruhenden Beobachters über eine Lorentz-Transformation in die des bewegten, so stellt sich heraus, dass dieser neben der elektrischen Kraft eine weitere wahrnimmt, die sich hinsichtlich ihrer mathematischen Struktur völlig mit den bekannten Gesetzen für Magnetfelder deckt. Die Existenz des Magnetfeldes in diesem Beispiel lässt sich daher auf die Struktur von Raum und Zeit zurückführen. Unter diesem Gesichtspunkt wirkt auch die im Vergleich zum Coulombgesetz komplizierte und auf den ersten Blick wenig plausible Struktur des vergleichbaren Biot-Savartschen Gesetzes für Magnetfelder weniger verwunderlich. Im mathematischen Formalismus der Relativitätstheorie werden das elektrische und das magnetische Feld zu einer Einheit, dem vierdimensionalen elektromagnetischen Feldstärketensor, zusammengefasst, ganz analog zur Vereinigung von Raum und Zeit zur vierdimensionalen Raumzeit.

Die allgemeine Relativitätstheorie

Hauptartikel: Allgemeine Relativitätstheorie

Gravitation und die Krümmung des Raumes

Die allgemeine Relativitätstheorie führt die Gravitation auf ein geometrisches Phänomen in einer gekrümmten Raumzeit zurück, indem sie feststellt:

  • Masse krümmt die Raumzeit in ihrer Umgebung.
  • Ein Gegenstand, auf den nur gravitative Kräfte wirken, bewegt sich zwischen zwei Punkten in der Raumzeit stets auf einer sogenannten Geodäte.

Entzieht sich die vierdimensionale Raumzeit der speziellen Relativitätstheorie bereits einer anschaulichen Vorstellbarkeit, so gilt das für eine zusätzlich gekrümmte Raumzeit erst recht. Zur Veranschaulichung kann man jedoch Situationen mit reduzierter Anzahl von Dimensionen betrachten. So entspricht im Fall einer 2-dimensionalen gekrümmten Landschaft die geradlinige Strecke dem Weg, den ein Fahrzeug mit geradeaus fixierter Lenkung nehmen würde. Würden zwei solche Fahrzeuge am Äquator nebeneinander exakt parallel Richtung Norden starten, dann würden sie sich am Nordpol treffen. Ein Beobachter, dem die Kugelgestalt der Erde verborgen bliebe, würde daraus auf eine Anziehungskraft zwischen den beiden Fahrzeugen schließen. Es handelt sich aber um ein rein geometrisches Phänomen. Gravitationskräfte werden daher in der allgemeinen Relativitätstheorie gelegentlich auch als Scheinkräfte bezeichnet.

Da der geodätische Weg durch die Raumzeit von ihrer Geometrie und nicht von der Masse des fallenden Körpers abhängt, fallen alle Körper im Gravitationsfeld gleich schnell, wie bereits Galilei feststellte. Dieser Umstand wird in der newtonschen Mechanik durch die Äquivalenz von träger und schwerer Masse beschrieben, die auch der allgemeinen Relativitätstheorie zugrunde liegt.

Uhren im Gravitationsfeld

In der allgemeinen Relativitätstheorie hängt der Gang von Uhren nicht nur von ihrer relativen Geschwindigkeit ab, sondern auch von ihrem Ort im Gravitationsfeld. Eine Uhr auf einem Berg geht schneller als eine im Tal. Dieser Effekt ist zwar im irdischen Gravitationsfeld nur gering, er wird jedoch beim GPS-Navigationssystem zur Vermeidung von Fehlern bei der Positionsbestimmung über eine entsprechende Frequenzkorrektur der Funksignale berücksichtigt.

Die mathematische Struktur der allgemeinen Relativitätstheorie

Während viele Aspekte der speziellen Relativitätstheorie in ihrer einfachsten Formulierung auch mit geringen mathematischen Kenntnissen nachvollziehbar sind, ist die Mathematik der allgemeinen Relativitätstheorie deutlich anspruchsvoller. Die Beschreibung einer krummen Raumzeit erfolgt mit den Methoden der Differentialgeometrie, die die euklidische Geometrie des uns vertrauten flachen Raumes ablöst. Die Entstehung der Krümmung wird durch die einsteinschen Feldgleichungen beschrieben. Dabei handelt es sich um Differentialgleichungen eines Tensorfeldes mit zehn Komponenten, die nur in speziellen Fällen analytisch, das heißt in Form einer mathematischen Gleichung, lösbar sind.

Kosmologie

Während die spezielle Relativitätstheorie bei Anwesenheit von Massen nur in Gebieten der Raumzeit gilt, die so klein sind, dass die Krümmung vernachlässigt werden kann, kommt die allgemeine Relativitätstheorie ohne diese Einschränkung aus. Sie kann somit auch auf das Universum als Ganzes angewandt werden und spielt daher in der Kosmologie eine zentrale Rolle. So wird die Expansion des Weltalls, die die Astronomen beobachten, durch die friedmannschen Lösungen der einsteinschen Feldgleichungen in Kombination mit einer sogenannten kosmologischen Konstanten angemessen beschrieben. Danach begann diese Expansion mit dem Urknall, der nach den jüngsten Untersuchungen vor 13,7 Milliarden Jahren stattgefunden hat. Er kann auch als der Beginn von Raum und Zeit angesehen werden, bei dem das gesamte Universum auf einem Raumgebiet vom Durchmesser der Planck-Länge konzentriert war.

Schwarze Löcher

Eine weitere Vorhersage der allgemeinen Relativitätstheorie sind Schwarze Löcher. Einstein konnte sich mit diesem Gedanken nicht anfreunden und meinte, es müsse einen Mechanismus geben, der die Entstehung solcher Objekte verhindert. Heutige Beobachtungen legen aber nahe, dass es solche Schwarzen Löcher im Universum tatsächlich gibt, und zwar als Endstadium der Sternentwicklung bei sehr massereichen Sternen und in den Zentren nahezu aller Galaxien.

Gravitationswellen

Schließlich folgt aus der allgemeinen Relativitätstheorie die Existenz von Gravitationswellen, lokalen Deformationen der Raumzeit, die sich mit Lichtgeschwindigkeit ausbreiten. Sie sollten bei der Beschleunigung von Massen entstehen. Diese Deformationen sind jedoch dermaßen klein, dass sie sich bis heute einem direkten Nachweis entzogen haben. Eine vergleichsweise nahe Supernovaexplosion im Jahre 1987 sollte Gravitationswellen erzeugt haben, die nachweisbar gewesen wären. Diese Jahrhundertchance wurde jedoch verpasst, da mangels Absprache sämtliche Gravitationswellendetektoren weltweit in den entscheidenden Sekunden zu Wartungszwecken abgeschaltet waren. Immerhin konnte aus Beobachtungen an Doppelsternsystemen mit Pulsaren die Existenz von Gravitationswellen indirekt bestätigt werden. Russell Hulse und Joseph Taylor erhielten dafür 1993 den Nobelpreis für Physik.

Entstehungsgeschichte

Ätherwind und Lorentztransformation

Hauptartikel: Geschichte der speziellen Relativitätstheorie

Mit seinen 1865 veröffentlichten Feldgleichungen hatte James Clerk Maxwell eine geschlossene Theorie von Elektrizität, Magnetismus und Optik vorgelegt, die in den folgenden Jahrzehnten experimentell glänzend bestätigt wurde. Beim Wechsel in ein bewegtes Koordinatensystem änderten die maxwellschen Gleichungen jedoch ihre mathematische Gestalt. Das war ein klarer Verstoß gegen das galileische Relativitätsprinzip und warf die Frage auf, warum Experimente zur Überprüfung der maxwellschen Theorie nicht durch die Eigenbewegung der Erde beeinträchtigt wurden.

Wenn elektromagnetische Wellen an einen Äther gebunden wären, müsste man die Eigenbewegung von Erde und Sonne als Ätherwind messen können.
Wenn elektromagnetische Wellen an einen Äther gebunden wären, müsste man die Eigenbewegung von Erde und Sonne als Ätherwind messen können.

Maxwell stellte sich elektromagnetische Wellen als an ein stoffliches Medium gebunden vor. Man bezeichnete dieses Medium als „den Äther“. Als die Verletzung des Relativitätsprinzips bemerkt wurde, schloss man, dass auf der bewegten Erde eine Art Gegenwind, den man Ätherwind nannte, nachweisbar sein müsse. Alle Versuche zum experimentellen Nachweis des Ätherwindes scheiterten jedoch; Michelson und Morley konnten 1887 interferometrisch nachweisen, dass die Geschwindigkeit der Erde relativ zum Äther keinesfalls größer als ein Viertel der Bahngeschwindigkeit der Erde sein kann. Doch erst um das Jahr 1900 sprachen namhafte Physiker, darunter Paul Drude und Henri Poincaré, ihre Zweifel an der Existenz des Äthers aus.

1887 entdeckte Woldemar Voigt in einer Arbeit über den Doppler-Effekt, dass bestimmte Gleichungen beim Wechsel in ein bewegtes Koordinatensystem ihre Form behalten, sofern man Orts- und Zeitkoordinaten nicht unabhängig voneinander transformiert, sondern in bestimmter Weise verkoppelt. Seine Koordinatentransformation ist jedoch fehlerhaft und unterscheidet sich um einen Faktor für alle Koordinaten von der Transformation, die 1899 von Hendrik Antoon Lorentz im Rahmen der lorentzschen Äthertheorie eingeführt wurde. Die darin vorkommenden verschiedenen Orts- und Zeitkoordinaten wurden jedoch lediglich als mathematische Hilfsgrößen ohne unmittelbaren Bezug zur Realität interpretiert.

1889 veröffentlichte der irische Physiker George FitzGerald eine kurze, nichtmathematische Arbeit, in der er darauf hinwies, dass das Michelson-Morley-Experiment nur erklärt werden kann, wenn man annimmt, dass die Interferometerarme ihre Länge ändern, je nachdem, welchen Winkel sie zum Ätherwind einnehmen. Lorentz kam 1892 unabhängig zum gleichen Ergebnis, das heute zumeist Lorentzkontraktion, seltener auch FitzGerald-Lorentz-Kontraktion genannt wird.

1898 wies Henri Poincaré darauf hin, dass wir keine intuitive Vorstellung von der Gleichheit zweier Zeitintervalle haben und dass Gleichzeitigkeit so definiert werden müsse, dass Naturgesetze eine möglichst einfache Gestalt haben. Im Juni 1905 veröffentlichte er, fast gleichzeitig mit Einsteins erster Arbeit zur Relativitätstheorie, einen Aufsatz Sur la dynamique de l'electron, in dem er das Relativitätsprinzip aussprach (die Unmöglichkeit, absolute Bewegung nachzuweisen, scheint ein allgemeines Naturgesetz zu sein). In der gleichen Arbeit gab er der Lorentz-Transformation ihren Namen.

Fast zeitgleich formulierte Albert Einstein 1905 eine radiakal neue Interpretation der lorentzschen Elektrodynamik durch Re-Formulierung der Begriffe von Raum und Zeit auf der Basis des Relativitätsprinzips und dem Prinzip der Konstanz der Lichtgeschwindigkeit. Das Ergebnis wird heute die spezielle Relativitätstheorie genannt.

Erstaunlicherweise haben sich Einstein und Poincaré niemals gegenseitig zitiert, während beide jederzeit auf die Verdienste von Lorentz hinwiesen. Lorentz seinerseits wollte sich niemals ganz von der Äthervorstellung lösen. Den revolutionären Schritt Einsteins, aus diesen Transformationen ein neues Raum- und Zeit-Verständnis abzuleiten, vollzog Poincaré allerdings ebenso wenig wie zuvor Lorentz.

Nichteuklidische Geometrie und Verallgemeinerung des Relativitätsprinzips

Sehr früh hatte es Überlegungen zur mathematischen Struktur des Raumes gegeben. So stellten die Mathematiker János Bolyai, Nikolai Iwanowitsch Lobatschewski und Carl Friedrich Gauß bereits Anfang des 19. Jahrhunderts fest, dass nicht unbedingt eine euklidische Geometrie des Raumes vorliegen müsse, und begannen, eine nichteuklidische Geometrie zu entwickeln. Diese Arbeiten blieben jedoch lange Zeit unbeachtet. Carl Friedrich Gauß publizierte seine diesbezüglichen Ergebnisse überhaupt nicht.

Zwischen 1818 und 1826 leitete Gauß die Hannoversche Landesvermessung und entwickelte dabei Verfahren mit erheblich gesteigerter Genauigkeit. In diesem Zusammenhang entstand die Vorstellung, er habe empirisch nach einer Krümmung des Raumes gesucht, indem er die Winkelsumme in einem Dreieck vermaß, das vom Brocken im Harz, dem Inselsberg im Thüringer Wald und dem Hohen Hagen bei Göttingen gebildet wird. Sie wird heute mehrheitlich als Legende angesehen, auch wenn die Möglichkeit, Gauß habe nach Abweichungen vom üblichen Wert der Winkelsumme von 180° gesucht, nicht mit letzter Konsequenz ausgeschlossen werden kann. Die Genauigkeit seiner Instrumente hätte jedoch für den Nachweis der winzigen Krümmung des Raumes im Gravitationsfeld der Erde bei weitem nicht ausgereicht. Sie ist auch heute noch nicht möglich.

Gauß' Schüler Bernhard Riemann war es, der die Differentialgeometrie krummer Räume entwickelte und 1854 vorstellte. Zu dieser Zeit erwartete niemand eine physikalische Relevanz dieses Themas. Tullio Levi-Civita, Gregorio Ricci-Curbastro und Elwin Bruno Christoffel bauten die Differentialgeometrie weiter aus. Einstein fand in ihren Arbeiten einen wahren Schatz an mathematischen Werkzeugen für seine allgemeine Relativitätstheorie.

1909 wies Hermann Minkowski darauf hin, dass bereits in der speziellen Relativitätstheorie die Vereinigung von Raum und Zeit zur Raumzeit zu einer nichteuklidischen Geometrie führt, auch wenn dabei der Raum selbst noch euklidisch bleibt, ein Gedankengang, der sich in der Folge als äußerst fruchtbar erwies.

Daraus und aus den Bemühungen, eine mit dem Relativitätsprinzip verträgliche Beschreibung der Gravitation zu entwickeln, erwuchs in den folgenden Jahren die allgemeine Relativitätstheorie. In mühevoller Arbeit eignete sich Einstein die nötigen mathematischen Fertigkeiten an. Anders als bei der speziellen Relativitätstheorie publizierte Einstein zunächst Teilergebnisse. Die endgültigen Feldgleichungen publizierte 1915 nahezu zeitgleich auch David Hilbert in einem Aufsatz, der unter dem Einfluss intensiver Diskussionen mit Einstein entstanden war. Hilbert erhob daher auch keine Ansprüche auf eine Priorität.

Einstein stellte fest, dass seine Feldgleichungen kein statisches Universum zulassen. 1917 schlug er daher die kosmologische Konstante vor, ein Zusatzterm in den Feldgleichungen, der ein zeitlich unverändertes Universum ermöglicht. 1922 stellte Alexander Friedmann Lösungen ohne kosmologische Konstante vor, für die das Universum entweder expandiert oder kollabiert. 1927 entdeckte Edwin Hubble die Expansion des Universums und bestätigte damit Friedmanns Ansatz. Einstein bezeichnete daraufhin George Gamow zufolge seine kosmologische Konstante als die größte Eselei meines Lebens. Heutige Beobachtungen deuten jedoch darauf hin, dass die kosmologische Konstante sehr wohl existiert, wenngleich mit einem anderen Wert, als für ein statisches Universum nötig wäre.

Weitere geometrische Theorien

Nach der Erklärung der Gravitation als geometrisches Phänomen lag es nahe, auch die anderen damals bekannten Grundkräfte, die elektrische und die magnetische, auf geometrische Effekte zurückzuführen. Theodor Kaluza (1921) und Oskar Klein (1926) nahmen dazu eine zusätzliche in sich geschlossene Dimension des Raumes mit subatomarer Länge an, derart dass sie uns verborgen bleibt. Sie blieben jedoch mit ihrer Theorie erfolglos. Auch Einstein arbeitete lange vergeblich daran, eine solche einheitliche Feldtheorie zu schaffen.

Nach der Entdeckung weiterer Grundkräfte der Natur erlebten diese sogenannten Kaluza-Klein-Theorien eine Renaissance - allerdings auf der Basis der Quantentheorie. Die heute aussichtsreichste Theorie zur Vereinigung der Relativitätstheorie und der Quantentheorie dieser Art, die Stringtheorie, geht von sechs beziehungsweise sieben verborgenen Dimensionen von der Größe der Planck-Länge und damit von einer zehn- beziehungsweise elfdimensionalen Raumzeit aus.

Experimentelle Bestätigungen

Der erste Erfolg der speziellen Relativitätstheorie war die Auflösung des Widerspruches zwischen dem Ergebnis des Michelson-Morley-Experiments und der Theorie der Elektrodynamik, der überhaupt als Anlass für ihre Entdeckung angesehen werden kann. Seither hat sich die spezielle Relativitätstheorie in der Interpretation unzähliger Experimente bewährt. Ein überzeugendes Beispiel ist der Nachweis von Myonen in der Höhenstrahlung, die auf Grund ihrer kurzen Lebensdauer nicht die Erdoberfläche erreichen könnten, wenn nicht auf Grund ihrer hohen Geschwindigkeit die Zeit für sie langsamer gehen würde, beziehungsweise sie die Flugstrecke längenkontrahiert erfahren würden.

Hingegen gab es zur Zeit der Veröffentlichung der allgemeinen Relativitätstheorie einen einzigen Hinweis für ihre Richtigkeit, die Periheldrehung des Merkur. 1919 stellte Arthur Stanley Eddington bei einer Sonnenfinsternis eine Verschiebung der scheinbaren Position der Sterne nahe der Sonne fest und lieferte mit diesem sehr direkten Hinweis auf eine Krümmung des Raums eine weitere Bestätigung der Theorie.

Weitere experimentelle Tests sind im Artikel zur allgemeinen Relativitätstheorie beschrieben.

Die Relativitätstheorie hat sich bis heute in der von Einstein vorgegebenen Form gegen alle Alternativen, die insbesondere zu seiner Theorie der Gravitation vorgeschlagen wurden, behaupten können. Die bedeutendste war die Jordan-Brans-Dicke-Theorie, die jedoch aufwändiger war. Ihre Gültigkeit ist bisher nicht widerlegt worden, der Bereich, den der entscheidende Parameter nach heutigem experimentellen Stand einnehmen kann, ist jedoch stark eingeschränkt.

Rezeption und Interpretation

Wahrnehmung in der Öffentlichkeit

Die neue Sichtweise der Relativitätstheorie bezüglich Raum und Zeit erregte nach ihrer Entdeckung auch in der Allgemeinheit Aufsehen. Einstein wurde zur Berühmtheit und die Relativitätstheorie erfuhr ein erhebliches Medienecho. Verkürzt auf den Spruch alles ist relativ wurde sie zuweilen in die Nähe eines philosophischen Relativismus gerückt.

Kritik an der Relativitätstheorie speiste sich aus verschiedenen Quellen, wie Unverständnis, Ablehnung der fortschreitenden Mathematisierung der Physik und Ressentiments gegen Einsteins jüdische Abstammung. Ab den 1920er Jahren versuchten einige wenige offen antisemitische Physiker, namentlich die Nobelpreisträger Philipp Lenard und Johannes Stark, der Relativitätstheorie eine deutsche Physik entgegenzusetzen. Wenige Jahre nach der nationalsozialistischen Machtergreifung ging Stark mit einem Artikel in der SS-Zeitung Das Schwarze Korps vom 15. Juli 1937 gegen die im Land verbliebenen Anhänger der Relativitäts- und Quantentheorie in die Offensive. Unter anderem denunzierte er Werner Heisenberg und Max Planck als weiße Juden. Heisenberg wandte sich direkt an Himmler und erreichte seine volle Rehabilitierung; nicht zuletzt mit Blick auf die Bedürfnisse der Rüstungsentwicklung blieb die Relativitätstheorie erlaubt.

Erkenntnistheoretische Implikationen

Raum und Zeit spielen eine Schlüsselrolle in der Erkenntnistheorie von Immanuel Kant. Das legt nahe, dass die Relativitätstheorie mit ihren Aussagen über Raum und Zeit auch philosophische Implikationen hat.

Für Kant sind Raum und Zeit unabhängig von jedem empirischen Inhalt, also a priori, gegebene Formen der Anschauung. Reine Anschauung ermöglicht es, reine Mathematik zu betreiben: Geometrie basiert auf Anschauung im Raum, Arithmetik basiert auf Abzählen in der Zeit. Mathematik erlaubt Synthetische Urteile a priori: „Ebensowenig ist irgendein Grundsatz der reinen Geometrie analytisch. Daß die gerade Linie zwischen zwei Punkten die kürzeste sei, ist ein synthetischer Satz. Denn mein Begriff vom Geraden enthält nichts von Größe, sondern nur eine Qualität“ (KrV, B16).

Kant nimmt also die euklidische Geometrie als Grundlage der (physikalischen) Anschauung an. An diese Vorgehensweise knüpfen heute die Protophysiker an.

Dass der physikalisch empirische (also: a posteriori) Raum der Relativitätstheorie zufolge tatsächlich gekrümmt ist, war Anfang des 20. Jahrhunderts überraschend, jedoch nicht unvereinbar mit dem erreichten Verständnis von Geometrie. Dass Raum und Zeit kommensurabel sind, weil zeitliche Größen durch Multiplikation mit der Lichtgeschwindigkeit in räumliche Größen umgerechnet werden können, so dass beide in den Gleichungen dieser Theorie strukturell nahezu gleichwertig in Erscheinung treten, war ebenfalls eine Überraschung.

Über die Mathematik hinaus findet Kant, dass auch die Naturwissenschaft (physica) synthetische Urteile a priori als Prinzipien in sich enthält, so etwa die Erhaltung der Masse (KdrV, B17). In der Relativitätstheorie tritt an Stelle der Massenerhaltung die Erhaltung der Gesamtenergie. Auch hier bestätigt die Physik die philosophische Kritik an Kant, der zu Folge synthetische Urteile a priori nicht möglich sind.

Schlusswort

Die Relativitätstheorie markiert wissenschaftshistorisch den Punkt, an dem zum ersten Mal Naturzusammenhänge entdeckt wurden, die sich grundsätzlich der menschlichen Vorstellbarkeit entziehen. Raum und Zeit sind Vorbedingung für jegliche Erfahrung und können daher nicht Gegenstand dieser Erfahrung sein, wie bereits Immanuel Kant sinngemäß feststellte. Diese Situation sollte sich durch die anschließende Entdeckung der Quantentheorie mit ihrer Aufgabe strikt deterministischer Modelle und der Erkenntnis des Zufalls als fundamentalem Bestandteil der Welt noch erheblich verschärfen. Im Rahmen eines naturwissenschaftlichen Ansatzes gelingt es lediglich mit den Mitteln der Mathematik, diese Grenze erfolgreich zu überschreiten. Die Relativitätstheorie ist daher von erkenntnistheoretischer Relevanz. Vor der Formulierung der Relativitätstheorie war die Diskussion über Raum, Zeit und Kosmologie weitgehend der Philosophie und Religion vorbehalten. Der Kirchenhistoriker Adolf von Harnack stellte seinerzeit fest:

„Man klagt darüber, dass unsere Generation keine Philosophen habe. Mit Unrecht. Sie sitzen jetzt nur in einer anderen Fakultät. Sie heißen Max Planck und Albert Einstein“.

Zitat

Nicht die vollständige Relativierung von Raum und Zeit ist die positive Leistung der Theorie, sondern der Nachweis der Unabhängigkeit der Naturgesetze von der Wahl des Bezugssystems, der Invarianz des Naturgeschehens gegenüber dem Wechsel des Standpunktes des Beobachters. Infolgedessen wäre der Name „Invarianten-Theorie des Naturgeschehens“ oder, wie gelegentlich vorgeschlagen wurde, „Standpunktlehre“ bezeichnender als der gebräuchliche Name „allgemeine Relativitätstheorie“.Arnold Sommerfeld

Anmerkungen

  1. Lise Meitner und Otto Robert Frisch: „Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction“, in: Nature 143, 1939, S. 239-240.

Literatur und Film

Physikalische Einführungen und Diskussion

  • Max Born: Die Relativitätstheorie Einsteins. Bearbeitet von Jürgen Ehlers und Markus Pössel. Springer, Berlin 72003. ISBN 3-540-67904-9
  • Albert Einstein, Leopold Infeld: Die Evolution der Physik. Zsolnay, Hamburg 1950, Rowohlt, Reinbek 1987. ISBN 3-499-18342-0
  • Albert Einstein: Grundzüge der Relativitätstheorie. Springer, Berlin 62002. ISBN 3-540-43512-3 (Originaltitel Meaning of relativity)
  • Jürgen Freund: Relativitätstheorie für Studienanfänger - ein Lehrbuch. vdf Hochschulverlag, Zürich 2004. ISBN 3-7281-2993-3
  • Hubert Goenner: Spezielle Relativitätstheorie und die klassische Feldtheorie. Elsevier - Spektrum Akademischer Verlag, München 2004. ISBN 3-8274-1434-2
  • Holger Müller, Achim Peters: Einsteins Theorie auf dem optischen Prüfstand - Spezielle Relativitätstheorie. in: Physik in unserer Zeit. Wiley-VCH, Weinheim 35.2004,2, S.70–75. ISSN 0031-9252
  • Wolfgang Nolting: Grundkurs Theoretische Physik. Bd 4. Spezielle Relativitätstheorie, Thermodynamik. Springer, Berlin 2003. ISBN 3-540-42116-5
  • Hans Stephani: Allgemeine Relativitätstheorie. Dt. Verl. der Wiss., Berlin 41991. ISBN 3-326-00083-9
  • Torsten Fließbach: Allgemeine Relativitätstheorie, Spektrum Akademischer Verlag, Heidelberg 2006, ISBN 3-8274-1685-X

Populäre Literatur

  • Julian Schwinger: Einsteins Erbe. Die Einheit von Raum und Zeit. Spektrum, Heidelberg 2000. ISBN 3-8274-1045-2 (leicht verständliche Einführung für Laien)
  • David Bodanis: Bis Einstein kam. Die abenteuerliche Suche nach dem Geheimnis der Welt. Fischer, Frankfurt am Main 2003. ISBN 3-596-15399-9 (leicht verständliche Einführung zum Verständnis der Relativitätstheorie und der vorher geläufigen Lehrmeinungen, erläutert z. B. in eigenen Kapiteln ausführlich E, m, und sogar das Gleichheitszeichen)
  • Gerald Kahan: Einsteins Relativitätstheorie - zum leichten Verständnis für jedermann. Dumont, Köln 1987, 2005. ISBN 3-7701-1852-9

Philosophische Einführungen und Diskussion

  • Julian Barbour: The End of Time, London: Weidenfeld & Nicolson 1999, ISBN 0-297-81985-2 verteidigt einen Mach'schen Ansatz
  • Ernst Cassirer: Zur Einsteinschen Relativitätstheorie. Erkenntnistheoretische Betrachtungen. Meiner, Hamburg 2001. ISBN 3-7873-1410-5
  • John Earman: World Enough and Space-Time, absolute versus relational theories of space and time, Cambridge, Mass. : MIT Pr. 1989, ISBN 0-262-05040-4
  • John Earman (Hg.): Foundations of space-time theories, Minneapolis, Minn. : Univ. of Minnesota Pr. 1977, ISBN 0-8166-0807-5
  • L. Sklar: Space, Time, and Spacetime, University of California Press 1977, ISBN ISBN 0-520-03174-1
  • R. Torretti: Relativity and Geometry, Oxford: Pergamon Pr. 1983, ISBN 0-08-026773-4
  • M. Friedman: Foundations of Space-Time Theories, relativistic physics and philosophy of science, Princeton, NJ : Princeton Univ. Pr. 1983, ISBN 0-691-07239-6
  • John Earman: Bangs, Crunches, Whimpers and Shrieks, singularities and acausalities in relativistic spacetimes, Oxford: Oxford Univ. Pr. 1995, ISBN 0-19-509591-X
  • H. Brown: Physical Relativity, space-time structure from a dynamical perspective, Oxford: Clarendon 2005, ISBN 978-0-19-927583-0für Fortgeschrittenere
  • Graham Nerlich: What spacetime explains, metaphysical essays on space and time, Cambridge: Cambridge Univ. Press 1994, ISBN 0-521-45261-9
  • T. Ryckman: The Reign of Relativity, philosophy in physics 1915-1925, New York: Oxford University Press 2005, ISBN 0-19-517717-7
  • R. DiSalle: Understanding space-time, the philosophical development of physics from Newton to Einstein, Cambridge u.a. : Cambridge Univ. Press 2007, ISBN 978-0-521-85790-1

sowie Überblicksdarstellungen in den meisten Handbüchern zur Naturphilosophie, Philosophie der Physik und oft auch Wissenschaftstheorie

Film

  • Einsteins große Idee, Frankreich, Grossbritannien 2005, ARTE F, Regie: Gary Johnstone. Das Drehbuch basiert auf dem Bestseller "Bis Einstein kam" von David Bodanis.

Weblinks

Wiktionary
 Wiktionary: Relativitätstheorie – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik
Wikibooks
 Wikibooks: Spezielle Relativitätstheorie I-V – Lern- und Lehrmaterialien


Dieser Artikel existiert auch als  Audiodatei.


Dieser Artikel wurde in die Liste der exzellenten Artikel aufgenommen.
Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com