See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Geodäte – Wikipedia

Geodäte

aus Wikipedia, der freien Enzyklopädie

Kürzeste Verbindung auf einer Kugeloberfläche, aufgetragen über dem Gradnetz (Orthodrome)
Kürzeste Verbindung auf einer Kugeloberfläche, aufgetragen über dem Gradnetz (Orthodrome)
Geodäten (rot) in einem zweidimensionalen gekrümmten Raum, der in einen dreidimensionalen Raum eingebettet ist
Geodäten (rot) in einem zweidimensionalen gekrümmten Raum, der in einen dreidimensionalen Raum eingebettet ist

Eine Geodäte (Pl. Geodäten), auch Geodätische, geodätische Linie oder geodätischer Weg genannt, ist die lokal kürzeste Verbindungskurve zweier Punkte.

Im Euklidischen Raum sind Geodäten stets Geraden. Relevant ist der Begriff "Geodäte" erst in gekrümmten Räumen (Mannigfaltigkeiten), wie zum Beispiel auf einer Kugeloberfläche oder anderen gekrümmten Fläche oder auch in der gekrümmten Raumzeit der Allgemeinen Relativitätstheorie. Man findet die geodätischen Linien mit Hilfe der Variationsrechnung.

Die Einschränkung "lokal" in der obigen Definition bedeutet, dass eine Geodäte nur dann die kürzeste Verbindung zwischen zwei Punkten zu sein braucht, wenn diese Punkte nahe genug beieinander liegen; sie muss aber nicht den global kürzesten Weg darstellen. Beispielsweise ist die kürzeste Verbindung zwischen zwei Punkten auf der Erdoberfläche stets Teil eines Großkreises, aber die beiden Teile, in die ein Großkreis durch zwei Punkte unterteilt wird, sind beide Geodäten, obwohl nur einer der beiden die „global“ kürzeste Verbindung darstellt.

  • Eine Geodäte auf der (als Kugel genäherten) Erdoberfläche ist stets Teil eines Großkreises; daran orientieren sich transkontinentale Flug- und Schifffahrtsrouten (siehe Orthodrome).
  • Im Sonderfall abwickelbarer Flächen (z.B. Kegel oder Zylinder) sind die Geodäten diejenigen Kurven, die bei der Abwickelung in die Ebene zu Geradenstücken werden.
\nabla_{\dot\gamma}\dot\gamma=0.
Dabei bezeichnet \nabla den Levi-Civita-Zusammenhang.
Diese Gleichung bedeutet, dass das Geschwindigkeitsvektorfeld der Kurve parallel längs der Kurve ist. Anschaulich ausgedrückt: Wer der Kurve folgt, der geht im Sinne der riemannschen Metrik „geradeaus“.
\ddot x^m+\Gamma^m_{kl}\dot x^k\dot x^l=0
Dabei sind die \Gamma^m_{kl} die Christoffelsymbole und x eine lokale Koordinatendarstellung des entsprechenden Weges.

Diese Differentialgleichungen ergeben sich mit Hilfe der Variationsrechnung.

[Bearbeiten] Siehe auch


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -