Línuleg algebra
Úr Wikipediu, frjálsa alfræðiritinu
Línuleg algebra er grein innan stærðfræðinnar sem lýtur að rannsóknum á vigrum, vigurrúmum, línulegum vörpunum og línulegum jöfnuhneppum. Þar sem vigurrúm eru mikilvæg í nútíma stærðfræði er línuleg algebra mikið notuð, bæði í hreinni algebru og í fallagreiningu. Línuleg algebra hefur ennfremur víðtækt notagildi í hnitarúmfræði, náttúruvísindum og félagsvísindum, þar sem oft er hægt að umrita ólínuleg líkön í línuleg líkön, til dæmis með beitingu velda, róta eða logra.
Greinar í stærðfræði tengdar línulegri algebru |
Vigur | Lína | Fylki | Plan | Háplan | Vigurrúm | Innfeldisrúm | Línuleg spönn | Línuleg vörpun | Línuleg jöfnuhneppi | Línulegt óhæði | Línuleg samantekt | Línulegur grunnur | Dálkarúm | Raðarúm | Þverlægni | Eigingildi | Eiginvigur | Eiginrúm | Kennimargliða | Útfeldi | Krossfeldi | Innfeldi | Ákveður | Bylta | Fylkjaliðun (LU-þáttun, QR-þáttun) | Hornalínugeranleiki | Hjáþættir | Gauß-eyðing | Gauß-Jordan eyðing | Gram-Schmidt reikniritið | Regla Cramers | Rófsetningin |
[breyta] Hlekkir
- Fyrirlestrar í línulegri algebru hjá MIT
- „Linear Algebra Toolkit“.
- „Linear Algebra Workbench“: margföldun og andhverfur fylkja, lausnir jöfnuhneppa, eigengildi, o.fl.
- Línuleg algebra hjá MathWorld.
- Frí kennslubók í línulegri algebru á PDF sniði.