Lebewesen
aus Wikipedia, der freien Enzyklopädie
Lebewesen | ||
---|---|---|
Systematik | ||
|
||
Domänen | ||
|
In der Biologie lassen sich Lebewesen beschreiben als physikalisch strukturierte materielle Systeme aus vorwiegend organisch-chemischen Substanzen, die durch einen Satz von Merkmalen beschreibbar sind, die als notwendige Kriterien für Leben erachtet werden. Diese Merkmale ergeben sich aus den Funktionen, die vorhanden sein müssen, damit diese Systeme das ihnen unterstellte Überlebensproblem zeitweise lösen können.[1] Der biologische Lebensbegriff verzichtet somit auf eine problematische Definition des Lebens und beschreibt stattdessen Eigenschaften des Lebendigen.
Die Lebewesen prägen entscheidend das Bild der Erde und die Zusammensetzung ihrer Atmosphäre. Die Masse aller Lebewesen zusammengenommen wird auf 1850 Milliarden Tonnen geschätzt. Davon sind über 99 % pflanzlicher Natur. [2]. Neuere Schätzungen vermuten jedoch, dass 30 % der gesamten Biomasse der Erde in Form unterirdisch lebender Mikroorganismen existieren.[3]
Die tiefsten bisher gefundenen Lebewesen sind Archaeen, die von Wissenschaftlern der Université de Bretagne Occidentale um Erwan Roussel in Bohrkernen aus dem Meeresboden vor Neufundland gefunden wurden. Noch in 1626 m Tiefe unter dem Meeresboden konnten die Mikroorganismen nachgewiesen werden.[4]
Rezente Lebewesen stammen immer von anderen Lebewesen ab (Abstammungstheorie). Über ihre Entstehung aus nicht lebenden Vorformen wird intensiv geforscht. Die Biologie befasst sich wissenschaftlich mit allen bekannten Lebewesen, ihren Abwandlungen und Vorläufern sowie mit Grenzformen des Lebens (z. B. Viren).
Verwandte Begriffe: Lebensform, Kreatur, Organismen.
Inhaltsverzeichnis |
[Bearbeiten] Eigenschaften von Lebewesen (Übersicht)
Kennzeichen | Beispiel Lebewesen | Beispiel Nicht-Lebewesen |
---|---|---|
Entropie | ||
Export | Lebewesen als selektiv offene thermodynamische Systeme mit Subsystemen (Organen), die für Entropieexport[5] sorgen. So kann die aktuelle Entropie des Systems unterhalb der den Tod kennzeichnenden maximal möglichen Entropie gehalten werden. | Technische Systeme mit Mechanismen zur Selbstreparatur. Datenkommunikation mit Fehlerkorrektur. Wie auch bei Lebewesen sichert hier Redundanz den erforderlichen Abstand zwischen aktuell erreichter und maximal möglicher Entropie. |
Energieaustausch mit der Umgebung | ||
Aufnahme | Energiegewinnung aus Nahrung durch Stoffwechsel mit der Umgebung. Pflanzen nehmen Lichtenergie auf (Photosynthese. In sehr großen Tiefen lebende Mikroorganismen nutzen aus Schwarzen Rauchern austretendes Schwefel und Metallsulfide, andere Lebewesen leben mit diesen Bakterien in Symbiose (Chemosynthese)[3].) | Felsen erwärmen sich am Tag durch Aufnahme von Energie durch Licht |
Abgabe | Alle Lebewesen, jedoch in besonderem Ausmaß Säugetiere, geben Energie direkt als Wärme und indirekt in stofflichen Ausscheidungen ab | und geben sie in der Nacht wieder ab |
Stoffaustausch mit der Umgebung | ||
Aufnahme | Nahrungsaufnahme | Betanken eines Autos mit Benzin |
Abgabe | Tiere geben Kohlenstoffdioxid und Wasser ab | Abgase des Autos bestehen (vor allem) aus Kohlenstoffdioxid und Wasser |
Stoffwechsel (chemische Umwandlung von Stoffen) | alle Lebewesen (außer Viren, Viroide und Prionen) | brennende Kerze |
Informationsaustausch | ||
Empfangen von Information | Pflanzen erkennen den Sonnenstand | Belichtungsmesser des Fotoapparates misst Lichtstärke |
Senden von Information | Warntracht der Wespen, Sprache der Bienen und der Hominiden | Verkehrsampel |
Reaktion auf Reize aus der Umwelt | ||
Anpassung/Ausrichtung | Pflanzen richten ihre Blätter nach dem Sonnenstand aus | Der Sonne nachgeführte Solarzellen |
Wachstum | ||
Volumenzunahme | Eine Hefezelle nimmt nach der Zellteilung an Volumen zu | Wachstum eines Kochsalz-Kristalls |
Zellteilung | Stammzellen des Knochenmarkes.
Zellteilung (Vermehrung) ist nicht „Ziel“ von Leben, sondern Folge von Wachstum: Durch Wachstum wird die zur Masse der Zelle relative Oberfläche geringer. Das verringert die Entropieexportmöglichkeit[6] der Zelle. Die Teilung erhöht die Oberfläche wieder. Es kann wieder mehr Entropie exportiert werden. |
„Zellteilung“ ist ein originär organischer Begriff, kann also keine anorganische Entsprechung haben (der Begriff „Zellteilung“ fällt unter den Begriff „Teilung“ (Vermehrung)). |
Selbstreproduktion (Fortpflanzung) | ||
Vermehrung | Die durch Zellteilung entstandenen Zellen sind ihrer Mutterzelle ähnlich. Kopie der DNA, also Vererbung. | Bei technischen Systemen noch nicht ausgereift, aber theoretisch möglich; sich selbst reproduzierende (siehe auch Rekursion) Computerprogramme sind Praxis (Computerviren). |
Stoffliche Grundlage | ||
Grundbausteine | Biomoleküle | Wassermolekül |
Informationsträger | DNA, RNA | Metallkristall |
Einzelne der die Lebewesen kennzeichnenden Merkmale findet man also auch bei technischen, physikalischen und chemischen Systemen. Insbesondere zeigt Feuer je nach Interpretation einen großen Teil dieser Eigenschaften.
- Auf alle lebenden Organismen („Lebewesen“) müssen zumindest auf der Ebene der Zelle alle Kennzeichen zutreffen.
- Tote Organismen wiesen in ihrer Vergangenheit alle Kennzeichen auf.
- Latentes Leben haben Organismen, die zwar nicht alle Kennzeichen aufweisen, also toten Organismen oder unbelebten Gegenständen ähnlich sind, jederzeit aber zu lebenden Organismen werden können. (Beispiele: Sporen von Bakterien oder Pilzen).
- Unbelebte Gegenstände zeigen zur Zeit ihrer Existenz nicht alle Kennzeichen.
Drei wesentliche Eigenschaften haben sich aber herauskristallisiert, die für alle Lebewesen als Definitionskriterien gelten sollen:
- Stoffwechsel (Metabolismus) während zumindest einer Lebensphase,
- Fähigkeit zur Selbstreproduktion, und
- die mit der Selbstreproduktion verbundene genetische Variabilität als Bedingung evolutionärer Entwicklung.
Diese Einschränkung würde aber viele hypothetische Frühstadien der Entwicklung des Lebens sowie rezente Grenzformen des Lebens, wie Viren, kategorisch ausschließen.
- Ausführlich wird dieser Aspekt im Abschnitt Lebewesen: Begriffsprobleme behandelt.
[Bearbeiten] Aufbau von Lebewesen
Alle Lebewesen (Pflanzen, Tiere, Pilze, Protisten, Bakterien und Archaeen) sind aus Zellen oder Synzytien (mehrkernigen Zellverschmelzungen, z. B. Ciliaten und viele Pilze) aufgebaut. Sowohl die einzelne Zelle als auch die Gesamtheit der Zellen (eines mehrzelligen Organismus) sind strukturiert und kompartimentiert, das heißt, sie bilden ein komplex aufgebautes System voneinander abgegrenzter Reaktionsräume. Sie sind untereinander und zur Außenwelt hin durch Biomembranen abgetrennt.
Jede Zelle enthält in ihrem Erbgut alle zum Wachstum und für die vielfältigen Lebensprozesse notwendigen Anweisungen.
Im Lauf des individuellen Wachstums differenzieren sich die Zellen zu verschiedenen Organen, die jeweils bestimmte Funktionen für das Gesamtsystem, das Individuum, übernehmen.
Der als Meeresbiologe bekannt gewordene Hans Hass betrachtet auch die außerhalb des Individuums gebildeten Produkte, wie das Fangnetz der Spinnen oder die Werkzeuge und Maschinen der Menschen, als Organe, die zum Individuum gehören und seine Fähigkeiten verbessern und erweitern. Der Mensch habe also auch zusätzliche Organe, die er für unterschiedliche Zwecke benutzen kann und sei daher als „Hyperzeller“ zu bezeichnen.
[Bearbeiten] Chemie der Lebewesen
[Bearbeiten] Elemente
Lebewesen bestehen vorwiegend aus Wasser, organischen Kohlenstoffverbindungen und häufig aus mineralischen oder mineralisch verstärkten Schalen und Gerüststukturen (Skelette).
Neben Kohlenstoff (C), Wasserstoff (H) und Sauerstoff (O) als Hauptelementen des Grundgerüsts der Biomoleküle kommen die Elemente Stickstoff (N), Phosphor (P), Schwefel (S), Eisen (Fe), Magnesium (Mg), Kalium (K), Natrium (Na) und Calcium (Ca) in den Lebewesen vor. Ferner kommen Chlor (Cl), Iod (I), Kupfer (Cu), Selen (Se), Cobalt (Co), Molybdän (Mo) und einige andere Elemente zwar nur in Spuren vor, sind aber dennoch essenziell.
Die weitaus häufiger als Kohlenstoff in der Erdkruste vorkommenden Elemente Silicium und Aluminium werden aufgrund ihrer eingeschränkten Verbindungsmöglichkeiten nicht als Bausteine des Lebens genutzt. Edelgase und Elemente schwerer als Iod (Ordnungszahl 53) treten nicht als funktionelle Bausteine von Lebewesen auf.
[Bearbeiten] Biochemische Bestandteile
Lebewesen sind vor allem durch den Besitz reproduzierender Moleküle gekennzeichnet. Bekannt sind heute die Polynukleotide DNA und RNA, aber auch andere Moleküle haben möglicherweise diese Eigenschaft. Ferner enthalten sie Eiweiße (Proteine), makromolekulare Kohlenhydrate (Polysaccharide) sowie komplexe Moleküle wie Lipide und Steroide. Alle diese Makromoleküle und komplexen Moleküle kommen nicht in der unbelebten Natur vor, sie können von unbelebten Systemen nicht hergestellt werden. Kleinere Bausteine wie Aminosäuren und Nukleotide dagegen sind auch in der unbelebten Natur, zum Beispiel in interstellaren Gasen oder in Meteoriten, zu finden und können auch abiotisch entstehen.
Daneben enthalten die Zellen der Lebewesen zu einem großen Teil Wasser und darin gelöste anorganische Stoffe.
Alle bekannten Lebensvorgänge finden in Anwesenheit von Wasser statt.
[Bearbeiten] Systematik der Lebewesen
Die biologische Systematik versucht, eine sinnvolle Gruppierung aller Lebewesen zu erstellen. Die oberste Stufe wird dabei von den Domänen gebildet. Man unterscheidet nach molekularbiologischen Kriterien drei Domänen: die eigentlichen Bakterien (Bacteria), die Archaeen (Archaea), früher auch Archaebakterien genannt und die Eukaryoten (Eucaryota). Die beiden erstgenannten Domänen enthalten alle Lebewesen ohne Zellkern, die Prokaryoten genannt werden. Die letztgenannte Domäne umfasst alle Lebewesen mit Zellkern, darunter fallen alle uns vertrauten Tiere, Pflanzen und Pilze sowie die Protisten.
[Bearbeiten] Lebewesen als Systeme
[Bearbeiten] Eigenschaften von Lebewesen
Diese Eigenschaften können auch unbelebten Systemen der Natur und der Technik zu eigen sein.
Lebewesen sind in der Terminologie der Systemtheorie:
- offen: Sie stehen in lebenslangem Energie-, Stoff- und Informationsaustausch mit der Umwelt.
- komplex: Leben setzt eine gewisse Komplexizität in der Organisation des Systems voraus
- dynamisch: Sie sind zumindest auf der biochemischen Ebene dauernd Reizen und Zwängen der Umwelt ausgesetzt, können aber zeitweise einen stationären Zustand einnehmen, weisen also eine Konstanz von Struktur und Leistung auf. Diese Veränderungen sind einerseits auf dem System innewohnende Bedingungen zurückzuführen (Beispiel: Erzeugung genetischer Variation durch Rekombination bei der Fortpflanzung), andererseits durch Umwelteinflüsse und Umweltreize. Lebewesen wirken wiederum auf ihre Umwelt verändernd zurück. (Beispiel: Veränderung der Zusammensetzung der Atmosphäre durch die Photosynthese.)
- deterministisch: Auch wenn alle Eigenschaften der Lebewesen durch die Naturgesetze bestimmt sind, lassen sich aufgrund ihrer Komplexität vor allem für emergente Eigenschaften kaum mathematisch exakte Aussagen über die Vorhersagbarkeit ihrer Eigenschaften und Entwicklung und ihres Verhaltens machen: Durch die für wissenschaftliche Untersuchungen notwendige Reduktion lassen sich zwar Gesetzmäßigkeiten für einzelne Elemente ermitteln. Daraus lassen sich aber nicht immer Gesetzmäßigkeiten für das Gesamtsystem ableiten.
- stabil und adaptiv: Lebewesen können trotz störender Einflüsse aus der Umwelt ihre Struktur und ihr inneres Milieu für längere Zeit aufrechterhalten. Anderseits können sie sich auch in Struktur und Verhalten verändern und Umweltänderungen anpassen.
- autopoietisch: Lebewesen sind sich selbst replizierende Systeme, wobei einerseits die Kontinuität von Struktur und Leistung über lange Zeiträume hinweg gewährleistet ist, andererseits durch die Ungenauigkeit der Replikation Möglichkeiten zur evolutionären Anpassung an Umweltänderungen bestehen.
- autark: Lebewesen sind bis zu einem gewissen Grad von der Umwelt unabhängig. (Siehe dazu die Erörterung der Problematik der Autarkie.)
[Bearbeiten] Organisation
Diese Organisationsformen können auch unbelebten Systemen der Natur und der Technik zu eigen sein.
- Als komplexe, heterogene Systeme bestehen Lebewesen aus vielen Elementen unterschiedlicher Struktur und Funktion, die durch zahlreiche, unterschiedliche Wechselwirkungen miteinander verknüpft sind.
- Lebewesen sind hierarchisch strukturiert: Sie bestehen aus zahlreichen unterschiedlich Elementen (Subsystemen), die durch zahlreiche Beziehungen miteinander verknüpft sind und selbst wieder aus zahlreichen Untereinheiten bestehen, welche selbst wieder Systeme darstellen und aus Subsystemen bestehen (zum Beispiel Organe bestehen aus Zellen, diese enthalten Organelle, welche aus Biomolekülen aufgebaut sind).
- Sie sind auch selbst wieder Elemente von komplexen Systemen höherer Ordnung (zum Beispiel Familienverband, Population, Biozönose), sind also ebenfalls mit zahlreichen weiteren Systemen (andere Lebwesen, unbelebte und technische Systeme) miteinander verknüpft.
- Alle Lebewesen sind Systeme mit speziellen Informationsbahnen und Informationsspeichern.
[Bearbeiten] Zeitablauf
Lebewesen haben einen Zeitablauf (Ontogenie): Sie werden geboren, sie wachsen, sie verändern sich, pflanzen sich fort, sie altern und sterben. Nach Zimmerman ist das Altern und Sterben allerdings nicht ein inhärentes Verhalten eines lebendes Systems, sondern Folge der Einwirkung äußerer Kräfte auf das lebende System, ähnlich wie die Änderung der Bewegungsrichtung eines materiellen Objekts stets auf eine Einwirkung von außen zurückzuführen ist. Ohne eine begrenzende äußere Einwirkung würde sich ein lebendes System im gesamten ihm zur Verfügung stehenden Raum (z. B. das Wasser auf der Erde) ausbreiten, wie es beispielsweise bei Einzellern zu beobachten wäre.
Bei vielen Einzellern ist potentielle Unsterblichkeit möglich, da aus einer Mutterzelle ohne Substanzverlust zwei (sozusagen erwachsene) Tochterzellen hervorgehen. Über die Keimbahn betrachtet besitzen jedoch alle Lebewesen das Potential der Unsterblichkeit. Diese Betrachtung ist ein logisches Gedankenspiel ohne wissenschaftliche Aussage.
[Bearbeiten] Das genetische Programm
Wie die komplexen physikalischen Systeme der unbelebten Natur (wie zum Beispiel das Sonnensystem) entstehen auch bei Lebewesen Strukturen durch Selbstorganisation. Darüber hinaus fehlt aber allen Systemen der unbelebten Natur und der Technik ein Element, das nur Lebewesen aufweisen: Das genetische Programm. Durch dieses Programm werden Lebensvorgänge ausgelöst, gesteuert und geregelt. Dazu gehört auch die Reproduktion dieses Programms. Dieses Programm ist teleonomisch, ohne teleologisch sein zu können: Es gibt die Richtung der ontogonetischen Entwicklung und des Verhaltens der Organismen vor und grenzt sie in einem gewissen Rahmen von anderen Entwicklungsmöglichkeiten und Verhaltensweisen ab. Fehlen Teile des Programms oder weisen sie Fehlfunktionen auf, können sich – innerhalb eines Toleranzbereiches – langfristig keine überlebensfähigen Organismen entwickeln.
[Bearbeiten] Evolution des Lebens
Das Leben auf der Erde nimmt einen historisch einmaligen Verlauf. Auch wenn man die Ausgangsbedingungen wiederherstellen könnte, würde sich vielleicht ein ähnlicher Ablauf ergeben, aber nicht derselbe, der bis heute stattgefunden hat. Der Grund dafür ist die Vielzahl von Zufallsentscheidungen, die seit dem Beginn des Lebens bis heute erfolgten. Diese Zufallsentscheidungen werden durch Selektions- und Anpassungsprozesse teilweise wieder ausgeglichen, trotzdem ist eine genau identische Entwicklung unter realen Bedingungen nicht vorstellbar.
Die Entwicklung der verschiedenen Arten von Lebewesen wird in der Evolutionstheorie behandelt. Dieser von Charles Darwin begründete Zweig der Biologie erklärt die Vielfalt der Lebensformen durch Variation, Mutation, Vererbung und Selektion.
Die Evolutionstheorie behandelt die Veränderung von Lebensformen im Laufe der Zeit und die Entstehung der ersten Lebensformen. Hierzu gibt es eine Reihe von Konzepten und Hypothesen (beispielsweise RNA-Welt, siehe auch Chemische Evolution).
Die ältesten bisher gefundenen fossilen Spuren von Lebewesen sind mikroskopische Fäden, die als Überreste von Cyanobakterien gelten. Allerdings werden diese in 3,5 Mrd. Jahre alten Gesteinen gefundenen Ablagerungen nicht allgemein als Spuren von Leben angesehen, da es auch rein geologische Erklärungen für diese Formationen gibt.
Neuere Ansätze zur Evolutionstheorie gehen davon aus, dass die Evolution nicht an der Art, sondern am Individuum und seinen Genen ansetzt. (Siehe Soziobiologie und Verhaltensbiologie)
[Bearbeiten] Lebewesen: Begriffsprobleme
[Bearbeiten] Definition der physischen Grenze
Hier ist die äußerste Grenze letztlich die Zellmembran, die Pellikula, die Zellwand oder eine andere einhüllende und begrenzende Struktur. Bei höheren Organisationsstufen übernehmen Abschluss- und Deckgewebe wie Epidermis, Epithel, Haut oder Rinde diese Funktion.
Viele Organismen geben Stoffe an die Umwelt ab und schaffen sich damit eine eigene Umwelt im Nahbereich, ein Mikromilieu. Beispiel: Schleimkapsel von Pneumococcus. Hier hängt die physische Abgrenzung des Individuums von der Fragestellung ab.
[Bearbeiten] Definition des Individuums
Der Begriff Individuum bedeutet nach seiner lateinischen Herkunft ein Unteilbares. In dieser Bedeutung ist der Begriff nicht für alle Lebewesen praktikabel. Die meisten höheren Tiere kann man nicht teilen, ohne sie oder den abgetrennten Teil damit zu töten. Sie sind nicht teilbar. Einen Hund als Individuum anzusprechen ist daher kein Problem.
Von einem „individuellen“ Baum kann man dagegen einen Ableger abteilen und diesen zu einem neuen Exemplar heranwachsen lassen. Damit ist der Baum nicht geteilt – als Baumteil lebt er nicht weiter –, sondern vermehrt. Viele Pflanzen bedienen sich dieses Verfahrens der Ausbreitung sogar systematisch, z. B. durch Ableger. Oft wachsen so ganze Rasen oder Wälder heran, die eigentlich einem einzigen zusammenhängenden Exemplar angehören, das aber jederzeit an beliebiger Stelle geteilt werden könnte.
Durch die Möglichkeit des Klonens entsteht die logische Fähigkeit zur Abtrennung eines neuen lebensfähigen Exemplars auch sogar für Säugetiere. Damit wird der Begriff Individuum für die Biologie mehr oder weniger hinfällig und müsste durch ein anderes Wort ersetzt werden, das besser trifft, was gemeint war, etwa „Exemplar“.
Bei Schleimpilzen und kolonienbildenden Einzellern (Beispiel Eudorina), lassen sich individuelle, autarke Zellen unterscheiden. Sie gehen aber zumindest zeitweise Verbindungen miteinander ein, in welcher sie ihre Individualität und Unabhängigkeit aufgeben, also einem mehrzelligen Organismus gleichen.
[Bearbeiten] Autarkie
Aufgrund der komplexen Wechselwirkungen von Organismen mit ihrer Umwelt kann man nur eingeschränkt von Autarkie sprechen:
- So sind Lebewesen bezüglich der Energie nie autark, sie sind immer auf eine externe Energiequelle angewiesen, die in der Regel letztlich durch die Sonne gegeben ist. Organismen, die als Energiequelle nur Licht oder die chemische Energie anorganischer Stoffe benötigen, also nicht auf andere Lebewesen als Energielieferanten angewiesen sind, können als energetisch autark betrachtet werden.
- Autotrophe Organismen sind in dem Sinne stofflich autark, als sie aus anorganischen Stoffen körpereigene organische Stoffe herstellen und diese im Stoffwechsel wieder zu anorganischen Stoffen abbauen. So lässt sich eine photosynthetisch aktive Pflanze in einem von der Umgebungsluft abgeschlossenen Glasgefäß bei ausreichender Beleuchtung am Leben erhalten, da sich ein Gleichgewicht zwischen Photosynthese und Atmung einstellen kann. Wachstum und Vermehrung sind in diesem System allerdings nur so lange möglich wie der Vorrat an Wasser und Nährsalzen ausreicht. Heterotrophe Organismen sind in diesem Sinne nicht autark, da sie auf die von anderen Lebewesen vorgefertigten Nährstoffe angewiesen sind.
- Übergeordnete Systeme wie zum Beispiel eine Lebensgemeinschaft (Biozönose) können wiederum energetische und stoffliche Autarkie erreichen, wenn bestimmte Organismengruppen in ausreichender Zahl und mit einer ausgeglichenen Vermehrungsrate vorhanden sind. (Siehe dazu Ökologisches Gleichgewicht.) So hat sich in der Tiefsee eine autarke Lebensgemeinschaft zwischen chemoautotrophen Bakterien, Röhrenwürmern, Krebsen und Fischen ausgebildet. Die Ökologie untersucht unter anderem, welche Mindestanforderungen eine abgeschlossene Lebensgemeinschaft erfüllen muss, um autark zu sein, das heißt einen geschlossenen Stoffkreislauf zu ermöglichen. Letztlich kann die Gesamtheit aller Lebewesen der Erde als eine autarke Lebensgemeinschaft aufgefasst werden (vergleiche dazu die Gaia-Hypothese, die die Erde als einen Organismus auffasst.)
- Alle Lebewesen sind bezüglich eines dem System innewohnenden Programms, des genetischen Systems, autark. Damit können sie selbst ihre Lebensvorgänge auslösen, steuern und regeln. (siehe Systemverhalten). (In diesem Sinne wären auch Viren und Viroide autark, ihr Programm ist aber nicht vollständig, sie sind auch auf die Programme ihrer Wirte angewiesen). Diese Autarkie ist insofern vollständig, als auch die Programmierung, also die Erstellung des genetischen Quellcodes nicht von außen, durch einen „Programmierer höherer Ordnung“, vorgenommen werden muss. Andererseits reichen die Programme nicht aus, um alle Lebensvorgänge zu determinieren: So kann sich zum Beispiel das Gehirn ohne Einfluss der Umwelt nicht fertig entwickeln. In völliger Dunkelheit würde die Sehrinde nicht ihre volle Funktionsfähigkeit erlangen.
- Alle Lebewesen sind bezüglich Wachstum, Reparatur und Reproduktion autark. Sie stellen die für sie charakteristischen Systemelemente (Biomoleküle, Zellorganelle, Zellen) selbst her, gleichen mit Hilfe von Reparaturmechanismen strukturelle Störungen innerhalb gewisser Grenzen von selbst aus und sind fähig, ähnliche Kopien von sich herzustellen. Die Herstellung identischer Kopien ist prinzipiell aufgrund physikalischer und chemischer Gesetzmäßigkeiten auf keiner Systemebene möglich. Die dadurch zwangsläufige Variation führt in Zusammenwirken mit der Umwelt zu Evolution auf allen Systemebenen. (siehe dazu Systemtheorie der Evolution)
Bei der Entwicklung der Systemtheorie durch Physiker, Mathematiker und Techniker gingen diese immer wieder auf Analogien in Struktur und Verhalten von Lebewesen ein. Diese Betrachtung von Lebewesen als Systeme führte dazu, dass Konzepte der Kybernetik, Informatik und der Systemtheorie Eingang in die Biologie gefunden haben, zuletzt und umfassend in der Systemtheorie der Evolution.
[Bearbeiten] Thermodynamische Definition
Lebewesen sind als offene Systeme zeit ihrer Existenz stets weit vom thermodynamischen Gleichgewicht entfernt. Sie weisen einen hohen Ordnungsgrad und damit eine niedrige Entropie auf. Diese können nur dadurch aufrechterhalten werden, dass die Erhöhung des Ordnungsgrades energetisch mit Prozessen gekoppelt wird, die die hierfür notwendige Energie liefern. (Beispiel: Aufbau von organischen Stoffen niedriger Entropie wie Glukose, DNA oder ATP, aus anorganischen Stoffen hoher Entropie wie Kohlenstoffdioxid, Wasser und Mineralsalzen durch Photosynthese und Stoffwechsel.) Tritt der Tod ein, stellt sich das thermodynamische Gleichgewicht ein, der hohe Ordnungsgrad kann nicht mehr aufrechterhalten werden, die Entropie wird größer. Leben kann thermodynamisch als die Rückkopplung eines offenen Systems mit seiner Umgebung verstanden werden, welches auf Kosten dieser die eigene Ordnung aufrechterhält. Diese Definition steht mit einer der möglichen Formulierungen des 2. Hauptsatz der Thermodynamik in Einklang, nach dem die Änderung der Entropie eines Gesamtsystems Null oder größer Null ist. Damit die Ordnung eines Systems aufrechterhalten bleiben oder zunehmen kann, muss die Unordnung der Umgebung mindestens in gleichem Maße zunehmen, so dass die Änderung des Gesamtsystems in Summe mindestens Null ist.
[Bearbeiten] Lebewesen aus der Sicht der Information
Ein Lebewesen ist ein zellbasiertes, informationsgesteuertes und -verarbeitendes Codesystem. Ein Leben ist eine zeitlimitierte Fähigkeit dieses Codesystems, die in ihm enthaltene semantische Information zu nutzen und weiterzugeben. Zimmerman bezeichnet das Lebewesen (und auch das menschliche Individuum) als „selbstkopierenden Datenträger“.
[Bearbeiten] Einordnung der Viren
Wird die Zelle als grundlegendes Kennzeichen von Lebewesen angesehen, werden Viren nicht zu den Lebewesen gerechnet, da sie keine Zellen sind und nicht aus Zellen aufgebaut sind. Sie haben keinen eigenen Stoffwechsel und pflanzen sich auch nicht selbständig fort. Ihre Vermehrung erfolgt durch Wirtszellen.
Viren lassen sich beispielsweise kristallisieren. Sie bestehen aus Proteinhülle und Nukleinsäurekern. Es gibt unter geeigneten Versuchsbedingungen die Degeneration von Viren zu Viroiden. Diese bestehen dann nur noch aus vermehrungsfähiger Nukleinsäure. Man könnte diese Viroide als „nackte“ Viren bezeichnen.
Mischt man solche Viroide und ihre Mutterviren in einem Gefäß, dem man permanent frische Nukleinsäuren und Aminosäuren hinzufügt, so vermehren sich die Viroide schneller als die echten Viren. Um infektiös zu bleiben, ist die Proteinhülle für sie nicht mehr nötig. Aus dem Virusgenom geht der Teil, der die Hülle kodiert, verloren.
Die Existenz der Viren könnte in der Evolution auf einen Übergang von „noch nicht lebendig“ zu „lebendig“ hinweisen. Allerdings könnten sich die Viren auch aus „echten“ Lebewesen wie den Bakterien entwickelt haben.
Mittlerweile ist es gelungen, die Sequenz des Kinderlähmungsvirus in einem DNA-Syntheseapparat künstlich zu erzeugen. (Auf die gleiche Weise hat man bereits viele weitere DNA- und RNA-Abschnitte für gentechnische Experimente erzeugt). Den DNA-Strang hat man dann in Zellen eingeschleust und es entstanden komplette, künstliche Polioviren.
Viren sind durch Mutationen und Selektion der Evolution unterworfen, was im weiteren Sinne auch für viele Nicht-Lebewesen gilt: So unterliegen laut der umstrittenen Mem-Theorie auch die nicht-physischen Ideen und Gedanken der Evolution, was auch für physische, nicht-lebendige Werkzeuge und Maschinen gilt.
[Bearbeiten] Siehe auch
[Bearbeiten] Quellen
- ↑ W.Deppert, Relativität und Sicherheit, in: Michael Rahnfeld (Hg.): Gibt es sicheres Wissen?, Bd. V der Reihe Grundlagenprobleme unserer Zeit, Leipziger Universitätsverlag, Leipzig 2006, ISBN 3-86583-128-1, ISSN 1619-3490, S. 90–188.
- ↑ M. Gleich, D. Maxeiner, M. Miersch, F. Nicolay: Life Counts. Eine globale Bilanz des Lebens. Berlin Verlag, Berlin 2000, ISBN 3-8270-0350-4
- ↑ a b Science, Bd.314, S. 479, 2006; Proceedings of the National academy of Sciences, Bd.103, S.2815; Süddeutsche Zeitung Nr.287, „Die unsichtbare Masse“, S. 16, 13.12.2006
- ↑ Ilka Lehnen-Beyel: Leben in Rekordtiefen. Auf: wissenschaft.de
- ↑ Erwin Schroedinger: What is life? 1943 (Erwin Schrödinger: Was ist Leben? 1987)
- ↑ Michail Wladimirowitsch Wolkenstein: Entropie und Information, 1986, ISBN 3-8171-1100-2 und ISBN 3-05-500628-3 (Wegen Urheberechtsstreitigkeiten zwischen zwei russischen Verlagen wurde diese Übersetzung ins Deutsche vom Markt genommen. Sie ist aber in vielen Bibliotheken zu finden.)
[Bearbeiten] Literatur
- Hans Joachim Flechtner: Grundbegriffe der Kybernetik, 1970
- Anna Maria Hennen: Die Gestalt der Lebewesen. Versuch einer Erklärung im Sinne der aristotelisch-scholastischen Philosophie. Königshausen und Neumann, Würzburg 2000, ISBN 3-8260-1800-1
- Sven P. Thoms: Ursprung des Lebens. Fischer, Frankfurt, ISBN 3-596-16128-2
- Urban & Fischer: Biologie, Anatomie, Physiologie. München, ISBN 3-437-26800-7
- Rudi Zimmerman, Die Datentransformation. Das Individuum als selbstkopierender Datenträger und das Zeitalter des Systems Mensch. Berlin. 2001, ISBN 3-8311-1902-3
- Hans Hass, Die Hyperzeller. Das neue Menschenbild der Evolution. Carlsen. 1994, ISBN 3-551-85017-8
[Bearbeiten] Weblinks
- Projekt „Tree of Life“ (engl.)