We provide Linux to the World

ON AMAZON:



https://www.amazon.com/Voice-Desert-Valerio-Stefano-ebook/dp/B0CJLZ2QY5/



https://www.amazon.it/dp/B0CT9YL557

We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Feste Fahrbahn – Wikipedia

Feste Fahrbahn

aus Wikipedia, der freien Enzyklopädie

Eine Feste Fahrbahn (vormals auch Schotterloses Gleis) ist ein bei Eisen-, Straßen- und U-Bahnen verwendeter Schienenoberbau, bei dem der Schotter und die Bahnschwellen durch einen festen Oberbau-Fahrbahnstrang aus Beton oder Asphalt ersetzt werden.

Feste Fahrbahn der SFS Köln–Rhein/Main vom Typ Heilit + Woerner mit Schallschutzelementen
Feste Fahrbahn der SFS Köln–Rhein/Main vom Typ Heilit + Woerner mit Schallschutzelementen
Feste Fahrbahn auf der SFS Nürnberg–Ingolstadt; System Bögl
Feste Fahrbahn auf der SFS Nürnberg–Ingolstadt; System Bögl
Übergang zwischen Fester Fahrbahn und dem herkömmlichen Schotter-Oberbau auf der NBS Ingolstadt–Nürnberg
Übergang zwischen Fester Fahrbahn und dem herkömmlichen Schotter-Oberbau auf der NBS Ingolstadt–Nürnberg
Feste Fahrbahn am Flughafen-Bahnhof Halle/Leipzig, Neubaustrecke Erfurt–Leipzig/Halle
Feste Fahrbahn am Flughafen-Bahnhof Halle/Leipzig, Neubaustrecke Erfurt–Leipzig/Halle

Inhaltsverzeichnis

[Bearbeiten] Merkmale

Bei höheren Zuggeschwindigkeiten steigt die Belastung des Fahrweges stark an. Der klassische Schotteroberbau, der elastisch auf die Zugüberfahrten reagieren soll, kann diesen Kräften nicht ausreichend standhalten, und es kommt zu dauerhaften Verschiebungen des Oberbaus, so genannten Gleislagefehlern. Diese führen zu einer Einschränkung des Fahrkomforts und machen oftmals die Einrichtung von Langsamfahrstellen aus Sicherheitsgründen erforderlich. Bei sehr hohen Fahrgeschwindigkeiten werden die Schottersteine des Oberbaus von Fahrzeugen angesaugt und beschädigen diese (Schotterflug).

Der Erhaltungsaufwand verdoppelt sich bei einer mit 250 bis 300 km/h befahrenen gegenüber einer mit 160 bis 200 km/h befahrenen Strecke. Ein Austausch des Schotters wird nach etwa 300 Mio. Lasttonnen (Summe der Achslasten) statt bisher über 1 Mrd. Lasttonnen, erforderlich. Mittels hochelastischen Schienenbefestigungen kann die Lebensdauer dieser Zeitraum erhöht werden[1].

Die Kosten für den Oberbau in Fester Fahrbahn hängen von zahlreichen Faktoren (Bauart, Schienenprofil, Trassierung etc.) ab. Grobe Richtwerte bei vielen Systemen reichen bis zum etwa eineinhalbfachen des konventionellen Schotteroberbaus bzw. bis knapp 1000 bis 1500 Euro pro Meter zweigleisiger, gerader Fahrbahn bei längeren Strecken. Grundsätzlich steigen mit zunehmender Streckenlänge die Möglichkeiten der Automatisierung, was zu niedrigeren Kosten pro Meter Fahrbahn führt. Auf der Schnellfahrstrecke Köln–Rhein/Main lagen die Kosten pro laufendem Kilometer Feste Fahrbahn bei rund 770.000 Euro[2].

1995 gab die Bahn die Kosten pro Kilometer Schotterfahrbahn mit durchschnittlich 850.000 D-Mark an, bei der Festen Fahrbahn 970.000 DM je Kilometer. Die Haltbarkeit des Schotterbetts wurde mit 40, die der Festen Fahrbahn mit 60 Jahren angegeben. Die jährliche Instandhaltung des Schotterbetts wurde dabei mit 15.000 DM je Kilometer, die der Festen Fahrbahn mit 1.000 DM je Kilometer angegeben.[3]

[Bearbeiten] Vorteile

Bei Geschwindigkeiten über 200 km/h sind neben der besseren Gleislagestabilität insbesondere die Wartungskosten bei der Festen Fahrbahn deutlich geringer, sie ist verformungs- und witterungsbeständiger; Gleislageprobleme (und damit Langsamfahrstellen) treten kaum auf. Ein Nachstopfen oder eine Reinigung von Schotter ist nicht nötig; auch das im Hochgeschwindigkeitsbereich zu beobachtende schwingungsbedingte Zerbröseln des Schotters tritt nicht auf. Man erwartet, dass die Feste Fahrbahn eine Lebensdauer von mindestens 60 Jahren haben wird. Dadurch steigen Verfügbarkeit, Zuverlässigkeit und Wirtschaftlichkeit der Strecke.

Durch die gegenüber der herkömmlichen Bauweise erhöhte Fähigkeit zur Aufnahme von Querkräften ermöglicht die Feste Fahrbahn in der Trassierung eine größere Überhöhung. Die Trassierung, beispielsweise die Gestaltung der Gleishalbmesser, wird damit flexibler[1]; hieraus folgen geringere Gleisradien und verringerter Flächenbedarf.

Auch das erforderliche Planum für die Gleise kann kleiner ausfallen. Im Tunnel kann der Querschnitt, aufgrund der geringen Konstruktionshöhe der Festen Fahrbahn, geringer ausfallen. Bei vorgegebenen Querschnitt kann das Lichtraumprofil vergrößert und der aerodynamische Widerstand reduziert werden[1]. In manchen Ländern ist die Verwendung von Fester Fahrbahn in Tunneln heute vorgeschrieben.

Darüber hinaus ist das Fahrgefühl in der Regel ruhiger als bei Schotteroberbau – ein Komfortvorteil für den Fahrgast.

Da die Toleranzen der Festen Fahrbahn gegenüber hitzebedingen Gleisverwerfungen geringer ist, ist sie auch für den Einsatz der Wirbelstrombremse, die beim Bremsen Wärme in der Schiene erzeugt (und damit u. U. Veränderungen in der Gleislage bewirkt), besser geeignet[1][4]. In Deutschland kommt die Wirbelstrombremse daher nur auf den in Fester Fahrbahn ausgeführten Schnellfahrstrecken Köln–Rhein/Main und Nürnberg–Ingolstadt–München zum Einsatz. Für Not- bzw. Schnellbremsungen wurden hingegen weite Teile des vom ICE 3 befahrenen Streckennetzes ertüchtigt.

[Bearbeiten] Nachteile

Schallabsorber auf Fester Fahrbahn im Euerwangtunnel zur Vermeidung des Tunnelknalls
Schallabsorber auf Fester Fahrbahn im Euerwangtunnel zur Vermeidung des Tunnelknalls

Größte Nachteile sind die aufwendigere Montage, die deutlich höheren Investitionen im Vergleich zum klassischen Oberbau und bei einigen Bauformen die noch fehlende Zulassung durch das Eisenbahnbundesamt.

Da eine Anpassung der Gleislage nach Einrichtung der Festen Fahrbahn nur noch im Rahmen der Korrekturmöglichkeiten des Schienenbefestigungs-Systems (wenige cm nach oben bzw. unten) möglich ist, bestehen besonders hohe Anforderungen an die dauernde Stabilität des Untergrundes[4]. So wurde beispielsweise die Feste Fahrbahn auf der Schnellfahrstrecke Hannover–Berlin bei der Südumfahrung von Stendal aufgrund des dort sehr setzungsempfindlichen Untergrunds nicht eingesetzt.

Die Lärmemission von darüber fahrenden Zügen ist höher. Eine Nachrüstung von Schalldämmplatten, auch zur Vermeidung des Tunnelknalls, ist allerdings möglich.

Als problematisch gilt auch die Wiederherstellung der Fahrbahn im Havariefall, beispielsweise nach Entgleisungen. Während konventioneller Schotter-Oberbau in einigen Stunden bis wenigen Tagen durchgearbeitet bzw. neu aufgebaut werden kann, bewegt sich der Zeitaufwand zur Wiederherstellung eines einige hundert Meter langen Feste-Fahrbahn-Oberbaus zumeist im Bereich einiger Wochen. Eine Ausnahme bilden Feste-Fahrbahn-Systeme in Plattenbauweise, bei denen zumindest einzelne Platten binnen einiger Stunden, beispielsweise während nächtlicher Sperrpausen, gewechselt werden können.

[Bearbeiten] Bauformen

Die Schwellen des Feste-Fahrbahn-Systems Rheda vor dem Einbetonieren auf der Stahlbetonplatte
Die Schwellen des Feste-Fahrbahn-Systems Rheda vor dem Einbetonieren auf der Stahlbetonplatte
Itztalbrücke noch ohne Feste Fahrbahn
Itztalbrücke noch ohne Feste Fahrbahn

Ursprünglicher Einsatzort der Festen Fahrbahn sind Tunnelstrecken, da sie dort insbesondere die Vorteile der besseren Gleislagestabilität und des geringeren Platzbedarfs ausspielen kann.

Mittlerweile wurden vielfältige Varianten der Festen Fahrbahn entwickelt, grundsätzlich lassen sich dabei Fahrbahnen mit Schwellensockeln und Fahrbahnen unterscheiden, bei denen die Schienen direkt auf der Fahrbahn montiert werden. Bei einigen Varianten werden die Schienen teilweise in die Fahrbahn eingegossen oder eingeklemmt.

Die nötige Elastizität wird dabei in der Regel durch elastische Materialien erreicht, die zwischen dem Oberbau und Unterbau montiert werden.

Zugelassen in Deutschland sind bislang nur schwellenbasierte Bauformen, bei den anderen Bauformen dauert das Genehmigungsverfahren noch an.

[Bearbeiten] System Rheda

Die nach dem Bahnhof Rheda bezeichnete Bauform besteht aus einer 20 Zentimeter dicken hydraulisch gebundenen Tragschicht, auf welcher eine 14 Zentimeter dicke Stahlbetonplatte (Tragplatte) angeordnet ist. Darauf werden die Betonschwellen ausgerichtet und abschließend mit Füllbeton, der durch Bewehrung mit der unteren Tragplatte verbunden ist, fixiert.

[Bearbeiten] System Züblin

Neben der Bauart Rheda wurde von Züblin ein Feste-Fahrbahn-System entwickelt. Bei dieser Bauart werden Zweiblockschwellen in den frischen Beton einer durchgehend bewehrten Betonplatte eingerüttelt. Die Erprobung des Systems erfolgte auf dem Nordring in München sowie im Bahnhof Oberesslingen, ebenso im Versuchsabschnitt Karlsfeld. Erstmals in Tunneln kam das System auf der 1991 eröffneten Neubaustrecke Mannheim-Stuttgart zum Einsatz. Weitere Anwendungen fand die Bauart Züblin auf der Berlin-Hamburger Bahn zwischen Wittenberge und Dergenthin, auf der Schnellfahrstrecke Berlin–Hannover (10 km Länge, bei Nahrstedt) und im Südabschnitt der Neubaustrecke Köln–Rhein/Main.[1]

[Bearbeiten] System FF Bögl

Bereits in den 1970er Jahren entwickelte die Baufirma Max Bögl eine als Gleistragplattensystem bezeichnete Feste Fahrbahn, die ab 1977 versuchsweise bei Dachau erprobt wurde. Ab 1999 folgte die weitere Erprobung der nun zur Serienreife weiterentwickelten Fahrbahn in Schleswig-Holstein sowie bei Heidelberg.

Hierbei werden Betonplatten fernab der eigentlichen Gleisbaustelle komplett incl. aller Schienenverbindungen in einer Fabrik vorgefertigt. Die Platten sind ca. neun Tonnen schwer, 6,45 m lang, 2,55 m breit und 20 cm hoch. Sie werden auf der Baustelle nur noch auf den Untergrund gelegt und untereinander fest verbunden, anschließend wird durch Löcher ein Bitumen-Zementmörtel eingefüllt, der als Kleber zwischen Tragschicht und Platte dient.

[Bearbeiten] Weitere Bauarten

Weitere Bauarten der Festen Fahrbahn verwenden Asphalttragplatten. Derartige Bauweisen kommen auf der 1994 eröffneten Nantenbacher Kurve (Bauart ATD, Deutsche Asphalt), im Raum Halle (teils mit Y-Schwellen (Bauart Walter bzw. Strabag) und im Raum Berlin (Bauart Gratac) zum Einsatz.[1]

Eine Reihe von weiteren von der Industrie entwickelten Varianten wurden 1996 auf der Rheinbahn bei Waghäusel eingebaut.[1]

[Bearbeiten] Entwicklung

[Bearbeiten] Entwicklung in Deutschland

Bahnsteiggleis 9 des Bahnhofs Rheda-Wiedenbrück mit Fester Fahrbahn
Bahnsteiggleis 9 des Bahnhofs Rheda-Wiedenbrück mit Fester Fahrbahn

Die Feste Fahrbahn, in Form von zwei Fertigteil-Konstruktionen, kam in Deutschland erstmals in den 1960er Jahren auf der Bahnstrecke Nürnberg–Bamberg im Bahnhof Hirschaid zur Anwendung. Die systematische Entwicklung und Erforschung erfolgte ab 1971 im Rahmen eines vom Bundesministerium für Forschung und Technologie geförderten Forschungsvorhabens Rad/Schiene[5]. Eine vom Prüfamt für Bau von Landverkehrswegen der Technischen Universität München entwickelte Fahrbahn wurde im Frühjahr 1972 auf einer Länge von 640 m[3] im Bahnhof Rheda eingebaut. Der Bahnhof liegt in einem Abschnitt der Bahnstrecke Hamm–Minden, die für Hochgeschwindigkeitsversuche vorgesehen war. Nach Einbau der Fahrbahn erfolgten Komponentenversuche und Messungen, um eine Bemessung für das System zu entwickeln. Nach 27 Liegejahren und einer Betriebsbelastung von mehr als 350 Mio. Lasttonnen waren bislang (Stand: 2000) keine Erhaltungsarbeiten erforderlich.[1]

Ab 1977 wurde das System Rheda, neben der Bauweise Züblin und zwei weiteren (Fertigteil-)Bauweisen, im Rahmen des Forschungsvorhabens Rad/Schiene auf einer Versuchsstrecke (ab 1977) in Karlsfeld (heute: S-Bahn München, Ast Petershausen) erprobt. Das Feste-Fahrbahn-System Rheda kam in der Folge bei Gleisabsenkungen in mehreren Tunneln (um Platz für die Elektrifizierung zu schaffen) sowie mehreren Röhren der 1991 eröffneten Schnellfahrstrecke Hannover–Würzburg zur Anwendung. Auch bei der Metro Singapur und mehreren Tunnel der Österreichischen Bundesbahnen wurde ein Feste-Fahrbahn-System vom Typ Rheda verwendet.[1]

In insgesamt vier Tunneln der ersten beiden Neubaustrecken (Hannover–Würzburg und Mannheim–Stuttgart) kam Feste Fahrbahn zum Einsatz.[4] Während in zwei Röhren zwischen Hannover und Würzburg eine modifizierte Form Rheda zum Einsatz kam, wurde auf derselben Strecke im Sengenbergtunnel eine überarbeitete Variante des Rheda-Systems verwendet. Im Marksteintunnel zwischen Mannheim und Stuttgart wurde die Bauart Züblin eingebaut.[6] Bis 1992 waren im Netz der Deutschen Bahn insgesamt in mit Hochgeschwindigkeit befahrenen Tunneln auf insgesamt 21,6 km Länge Feste Fahrbahn installiert. Auf Brücken kam die Feste Fahrbahn bis zu diesem Zeitpunkt aufgrund unvermeidbarer Verschiebungen und Verdrehungen des Tragwerks nicht zum Einsatz. Eine Ausnahme bildete eine Brücke über die Amper der Bahnstrecke München–Lindau.[4]

Eine modifizierte Rheda-Variante wurde 1994 auf der Berlin-Hamburger Bahn zwischen Breddin und Glöwen eingebaut. Bis Ende 1994 waren fast 60 Kilometer Schienenweg in Deutschland in Fester Fahrbahn errichtet worden[3]. 1998 folgte ein 58 km langer Abschnitt der Schnellfahrstrecke Hannover–Berlin; insgesamt wurde Feste Fahrbahn, im Abschnitt Oebisfelde–Staaken, auf einer Gesamtlänge von 91 Kilometern eingesetzt.

In den Jahren 1995 bis 1998 wurde der Schotteroberbau der Berliner Stadtbahn durch eine Feste Fahrbahn ersetzt, wobei Zweiblock- statt Spannbeton-Schwellen zum Einsatz kamen. Eine Weiterentwicklung dieser so genannten Bauart Berlin wird auf der Bahnstrecke Halle–Guntershausen bei Naumburg verwendet.[1]

Die 2002 in Betrieb genommene Schnellfahrstrecke Köln–Rhein/Main ist auf einer Länge von 146 Kilometern mit einem Oberbau als Fester Fahrbahn für Geschwindigkeiten bis zu 300 km/h ausgestattet. Auch auf der Schnellfahrstrecke Nürnberg–Ingolstadt kommt auf einer Länge von 75 Kilometern Feste Fahrbahn zum Einsatz. Mittlerweile werden Feste Fahrbahnen auch bei der Sanierung von Tunnels gebaut, z. B. beim Esslingerberg-Tunnel auf der Bahnstrecke Ingolstadt–Treuchtlingen.

[Bearbeiten] Entwicklung in anderen Ländern

  • Nachdem die Japanese National Railways auf der 1964 eröffneten Linie des Tōkaidō-Shinkansen schlechte Erfahrungen mit Schotter-Oberbau gemacht hatten, kam ab 1972 ein Fertigteilplattensystem auf den ab diesem Jahr eröffneten Shinkansen-Strecken – zuerst auf Brücken und Tunneln, später auch auf Erdkörpern – zum Einsatz. Bis zum Jahr 2000 waren 1200 km Streckennetz mit den etwa fünf Meter langen, 2,3 m breiten und 160 bzw. (später) 190 mm hohen Platten ausgerüstet. Der Fertigteiloberbau wurde auch in Italien, beim Ausbau der Strecke Udine–Tarvisino, verwendet.[1]
  • Bei den Schweizerischen Bundesbahnen findet seit 1966 ein Feste-Fahrbahn-System mit gummigelagerten Zweiblock-Schwellen Verwendung. Das zuerst im Bözbergtunnel eingebaute System wurde seither eine Reihe von Tunneln eingeaut.[1]
  • Bei den Österreichischen Bundesbahnen kommt die Feste Fahrbahn seit einigen Jahren in Tunnels und Abschnitten zwischen den Tunnels zum Einsatz, so z. B. auf der Tauernbahn bei Schwarzach/Salzburg sowie im Tauerntunnel selbst. Dies hat den Zweck, Einsatzfahrzeugen das Befahren der Tunnels zu ermöglichen. Auch die Tunnels der Neubauabschnitte der Westbahn zwischen Wien und Linz erhielten bzw. erhalten eine Feste Fahrbahn. Ebenso wird der gegenwärtig in Sanierung befindliche Arlbergtunnel auf 10 km Länge mit einer Festen Fahrbahn ausgestattet.
  • Die Nederlandse Spoorwegen entwickelte eine Feste Fahrbahn bei der die Schienen elastisch eingebettet werden. Das System fand erstmals 1973 auf einer Eisenbahnbrücke sowie im Netz der Straßenbahn Den Haag Verwendung.[1]
  • In Frankreich wurde, im Hochgeschwindigkeitsverkehr, erstmals auf der LGV Est européenne, im Bereich der Überleitstelle Chauconin, eine Feste Fahrbahn zur Betriebserprobung eingerichtet.[7]
  • In Tschechien gibt es nur einen 440 m langen Abschnitt mit fester Fahrbahn. Er befindet sich zwischen den Bahnhöfen Rudoltice v Čechách und Třebovice v Čechách, ist nach dem deutschen System Rheda 2000 aufgebaut und seit dem 1. August 2005 in Betrieb.
  • In Italien kam die feste Fahrbahn auf der Brennerbahn im 14 km langen Schlerntunnel zur Anwendung, sowie auf vielen Abschnitten der Ausbaustrecke Udine-Tarvisio.

[Bearbeiten] U-Bahn

Auch bei U-Bahnen werden Feste Fahrbahnen gebaut.

Bei der U-Bahn Nürnberg sind alle Tunnelstrecken als Feste Fahrbahn ausgeführt. Oberirdische Abschnitte hingegen verwenden einen klassischen Schotteroberbau.

Die Berliner U-Bahn hat immer wieder versuchsweise Feste Fahrbahnen in Neubaustrecken eingesetzt, beispielsweise befindet sich im U-Bahnhof Tierpark eine Feste Fahrbahn aus dem Jahr 1973. Die BVG ist jedoch bei anstehenden Sanierungen von solchen Versuchen meistens wieder zu Schotterstrecken zurückgekehrt.

Bei der Sanierung der Hochbahnstrecke der U1 in Berlin-Kreuzberg hat die BVG seit 2004 eine Feste Fahrbahn in Form einer neuartigen Ständerkonstruktion für die Gleise auf dem Hochbahnviadukt eingebaut, z. B. auf dem U-Bahnhof Hallesches Tor. Der Hintergrund dafür ist, dass sich damit die Instandhaltungsaufwendungen auf dem Viadukt verringern lassen. In der Vergangenheit kam es im Bereich der Entwässerung unterhalb der Verschotterung zu Verstopfungen. Durch den Schotter waren diese Stellen schwer zugänglich und durch den Wasserrückstau kam es zu Korrosionsschäden am Viadukt. Diese neue Form soll in den nächsten Jahren bei anstehenden Sanierungen auf den Hochbahnabschnitten verstärkt angewendet werden.

[Bearbeiten] Straßenbahn

Auch bei zahlreichen Straßenbahnen kommen Feste-Fahrbahn-Systeme zum Einsatz.

So werden beispielsweise in Linz (etwa seit 1988) und Graz (etwa seit 2000) alle neu hergestellten Streckenabschnitte durchwegs auf einer am Ort gegossenen Stahlbetonplatte gegründet. Zur Vibrationsdämpfung wird die Fahrbahn dabei häufig auf (und zwischen) etwa 3 cm starken Gummigranulatmatten und gegen in den Untergrund ausstreuenden Strom isoliert sowie durch eine starke Kunststofffolie zur Vermeidung von Elektrokorrosion. In Linz werden, etwa seit 1990, die Schienen mit Abstandshaltern zu einem Gleis verschraubt, auf konische Betonblöcke abgelegt und am Stoß verschweißt. Unterhalb werden viele 10x20 cm große Auflageplatten mit der Schiene verbunden, die samt Kunststoffdübel in die Betonplatte eingegossen werden. Darauf wird später die Schiene mit einer Gummibeilage angeschraubt.

[Bearbeiten] Literatur

Commons
 Commons: Feste Fahrbahn – Bilder, Videos und Audiodateien
  • Roland Heinisch, Rolf Kracke, Eckart Lehmann: Feste Fahrbahn, Hestra Verlag Darmstadt, 1997, ISBN 3777102695
  • Edgar Darr, Werner Fiebig: Feste Fahrbahn – Konstruktion und Bauarten für Eisenbahn und Strassenbahn, VDEI-Schriftenreihe, Eurailpress, 2006, ISBN 3-7771-0348-9.

[Bearbeiten] Weblinks

[Bearbeiten] Verschiedene Systeme

[Bearbeiten] Einzelnachweise

  1. a b c d e f g h i j k l m n J. Eisenmann, G. Leykauf: Feste Fahrbahn für Schienenbahnen. In: Betonkalender 2000 BK2. Verlag Ernst & Sohn, Berlin 2000, S. 291–298.
  2. Ohne Autor: Das Projekt Neubaustrecke Köln–Rhein/Main. In: Eisenbahn JOURNAL: Tempo 300 – Die Neubaustrecke Köln–Frankfurt. Sonderausgabe 3/2002, ISBN 3-89610-095-5, S. 34–63
  3. a b c Raus aus dem Schotterbett!. In: ZUG, Nr. 1, 1995, ohne ISSN, S. 28–32.
  4. a b c d Lothar Friedrich, Albert Bindinger: Die Komponenten des Fahrwegs für das ICE-System in der Bewährung. In: Eisenbahntechnische Rundschau, 1992, Heft 6, S. 391–396
  5. Der InterCity Express – Ergebnis der Förderung der Bahnforschung durch den BMFT. In: Eisenbahntechnische Rundschau, 40 (1991), Heft 5/6, S. 377
  6. Peter Münchschwander (Hrsg.): Das Hochgeschwindigkeitssystem der Deutschen Bundesbahn. R. v. Decker's Verlag G. Schenk, Heidelberg 1990, ISBN 3-7685-3089-2, S. 123.
  7. LGV Est. services begin. In: Today's railways Europe. Ausgabe 138, June 2007, ISSN 1354-2753, S. 32–40.
Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com