雅可比矩阵
维基百科,自由的百科全书
在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式成为雅可比行列式。
还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。
它们全部都以数学家卡爾·雅可比命名;英文雅可比量"Jacobian"可以发音为[ja ˈko bi ən]或者[ʤə ˈko bi ən]。
目录 |
[编辑] 雅可比矩阵
雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。
假设F:Rn→Rm 是一个从欧式n维空间转换到欧式m维空间的函数。这个函数由m个实函数组成: y1(x1,...,xn), ..., ym(x1,...,xn). 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这就是所谓的雅可比矩阵:
此矩阵表示为:
- ,或者
这个矩阵的第i行是由梯度函数的转置yi(i=1,...,m)表示的
如果p是Rn中的一点,F在p点可微分,那么在这一点的导数由JF(p)给出(这是求该点导数最简便的方法)。在此情况下,由F(p)描述的线性算子即接近点p的F的最优线性逼近,x逼近与p
- }-
[编辑] 例子
由球坐标系到直角坐标系的转化由F函数给出:R × [0,π] × [0,2π] → R3
此坐标变换的雅可比矩阵是
R4的f函数:
其雅可比矩阵为:
此例子说明雅可比矩阵不一定为方矩阵。
[编辑] 在动态系统中
给出x'=f
[编辑] 参看
- 推前
- 海森矩阵
[编辑] 外部连接
- Ian Craw的本科教学网页 雅可比量的通俗解释
- Mathworld 更技术型的雅可比量的解释