See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
เซต - วิกิพีเดีย

เซต

จากวิกิพีเดีย สารานุกรมเสรี

บทความนี้ต้องการการจัดรูปแบบข้อความ การจัดหน้า การแบ่งหัวข้อ
การจัดลิงก์ภายใน และหรือการจัดระเบียบอื่น ๆ

คุณสามารถช่วยแก้ไขปัญหานี้ได้! โดยการกดที่ปุ่ม แก้ไข ด้านบน จากนั้นจัดรูปแบข้อความ จัดหน้า แบ่งหัวข้อ ทำลิงก์ภายในสำหรับคำสำคัญ หรือจัดระเบียบอื่น ๆ ให้เหมาะสม
ดูรายละเอียดเพิ่มเติมได้ที่ การแก้ไขหน้า การแก้ไขหน้าพื้นฐาน บทความคัดสรร และ นโยบายวิกิพีเดีย
อินเตอร์เซกชันของเซตสองเซต คือเซตที่ประกอบด้วยสมาชิกที่อยู่ในเซตทั้งสองเซต ดังแสดงในแผนภาพเวนน์
อินเตอร์เซกชันของเซตสองเซต คือเซตที่ประกอบด้วยสมาชิกที่อยู่ในเซตทั้งสองเซต ดังแสดงในแผนภาพเวนน์

ในทางคณิตศาสตร์ เซต (set) อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้

เนื้อหา

[แก้] นิยาม

ตอนเริ่มแรกของ Beiträge zur Begründung der transfiniten Mengenlehre โดย เกออร์ก คันทอร์ (Georg Cantor) ผู้สร้างทฤษฎีเซตคนสำคัญ ให้นิยามของเซตเซตหนึ่งดังต่อไปนี้:[1]

โดย "เซต" เซตหนึ่ง เราหมายถึงการสะสมรวบรวมใดๆ ที่ให้ชื่อว่า M เข้าเป็นหน่วยเดียวกันทั้งหมด ของวัตถุที่ให้ชื่อว่า m ที่แตกต่างกัน (ซึ่งเรียกว่า "สมาชิก" ของ M) ตามความเข้าใจของเรา หรือตามความคิดของเรา

ดังนั้นสมาชิกของเซตเซตหนึ่งจึงสามารถเป็นอะไรก็ได้ เช่น ตัวเลข ผู้คน ตัวอักษร หรือเป็นเซตของเซตอื่น เป็นต้น เซตต้องเขียนแทนด้วยอักษรตัวใหญ่ เช่น A, B, C ฯลฯ ตามธรรมเนียมปฏิบัติ ในประโยคที่ว่า เซต A และ B เท่ากัน หมายความว่า ทั้งเซต A และเซต B มีสมาชิกทั้งหมดเหมือนกัน (ตัวอย่างเช่น สมาชิกทุกตัวที่อยู่ในเซต A ก็ต้องเป็นสมาชิกของเซต B ด้วย เขียนแทนด้วย A = B และในทางกลับกันก็เป็นเช่นเดียวกัน เขียนแทนด้วย B = A)

สมาชิกทุกตัวของเซตเซตหนึ่งต้องไม่ซ้ำกัน และจะไม่มีสมาชิกสองตัวใดในเซตเดียวกันที่เหมือนกันทุกประการ ซึ่งไม่เหมือนกับมัลทิเซต (multiset) ที่อาจมีสมาชิกซ้ำกันก็ได้ การดำเนินการของเซตทั้งหมดยังรักษาคุณสมบัติที่ว่าสมาชิกแต่ละตัวของเซตต้องไม่ซ้ำกัน ส่วนการเรียงลำดับของสมาชิกของเซตนั้นไม่มีความสำคัญ ซึ่งต่างจากลำดับอนุกรมหรือคู่อันดับ

[แก้] การเขียนอธิบายเซต

มีสองวิธีในการเขียนอธิบาย หรือระบุถึงสมาชิกของเซตเซตหนึ่ง วิธีที่หนึ่งคือโดยการกำหนดนิยามอย่างตั้งใจ intensional definition, ด้วยการใช้กฎหรือการอธิบายด้วย ภาษาทางคณิตศาสตร์ semantic ดูตัวอย่างนี้:

A เป็ตเซตซึ่งสมาชิกของมันเป็น เลขจำนวนเต็ม integers บวกสี่ตัวแรก
B เป็นเซตของสีของ ธงชาติฝรั่งเศส

วิธีที่สองคือโดย การขยายความหรือการแจกแจง extension นั่นคือ การแจกแจกสมาชิกแต่ละตัวของเซต การนิยามเซตด้วยการแจกแจงสมาชิก extensional definition ถูกเขียนแทนด้วยการแจกแจงสมาชิกของเซตภายใน เครื่องหมายวงเล็บปีกกา braces:

C = {4, 2, 1, 3}
D = {blue, white, red}

ลำดับที่สมาชิกของเซตถูกเรียงในการนิยามแบบแจกแจกสมาชิกไม่มีความสำคัญ เช่นเดียวกันกับจำนวนสมาชิกที่ซ้ำกันในรายการแจกแจง ตัวอย่างเช่น

{6, 11} = {11, 6} = {11, 11, 6, 11}

เป็นเซตที่เหมือนกันทุกประการ เพราะว่าการแจกแจงสมาชิกเซตมีความหมายเพียงว่าองค์ประกอบแต่ละตัวในรายการแจกแจงเป็นสมาชิกตัวหนึ่งของเซตนั้นแค่นั้นเอง

สำหรับเซตที่มีสมาชิกจำนวนมาก การระบุของสมาชิกสามารถเขียนอย่างย่อได้ ตัวอย่างเช่น เซตของเลขจำนวนเต็มบวกหนึ่งพันตัวแรกสามารถเขียนแบบแจกแจงได้เป็น:

{1, 2, 3, ..., 1000},

ที่ซึ่ง อิลิปซิส"..." ellipsis ("...") ระบุว่ารายการแจกแจงดำเนินต่อไปในทางที่เห็นได้ชัด อิลิปซิส"..."อาจถูกใช้ในที่ซึ่งเซตมีสมาชิกไม่จำกัด ดังเช่น เซตของ เลขจำนวนเต็มคู่ even numbers บวก เขียนแทนได้ว่า {2, 4, 6, 8, ... }

เราอาจใช้เครื่องหมายปีกการะบุเซตด้วยการนิยามได้ ในการใช้นี้ ปีกกามีความหมายว่า "เซตของ ...ทั้งหมด" ดังน้น E = {playing-card suits} คือเซตซึ่งสมาชิกสี่ตัวของมันคือ ♠, ♦, ♥, และ ♣ รูปแบบทั่วไปของมันคือ การใช้ เครื่องหมายตัวสร้างเซต set-builder notation ตัวอย่างเช่น เซตF ของเลขจำนวนเต็มที่น้อยที่สุดยึ่สิบตัวซึ่ง ยกกำลังสอง perfect squares แล้วหักออกด้วยสี่สามารถเขียนได้เป็น:

F = {n2 - 4 : n เป็นเลขจำนวนเต็ม; และ 0 ≤ n ≤ 19}

ในการนิยามนี้ เครื่องหมาย โคลอน":" colon (":") หมายถึง "โดยที่" และ การเขียนให้รายละเอียดสามารตีความได้ว่า "เซตF เป็นเซตของเลขทั้งหมดของนิพจน์ n2 - 4, โดยที่ n เป็นเลขจำนวนเต็มตั้งแต่ 0 ถึง 19" บางครั้ง " vertical bar ("|") ถูกใช้แทนโคลอน":"

บ่อยครั้งที่พวกเราต้องเลือกระบุเซตแบบนิยามหรือแบบแจกแจง ในตัวอย่างข้างต้น จะเห็นว่า A = C และ B = D

[แก้] คำศัพท์และสัญลักษณ์ของเซต

  1. เราอาจจะคิดว่าเซต คือ กลุ่มของสิ่งต่างๆซึ่งมีกฎเกณฑ์ชัดเจนว่าสิ่งใดอยู่ในเซตและสิ่งใดไม่ได้อยู่ในเซต สิ่งที่อยู่ในเซตเรียกว่าสมาชิกของเซต โดยทั่วไปจะแทนเซตด้วยตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่ เช่น A,B,C และแทนสมาชิกของเซตซึ่งยังไม่เจาะจงว่าคือตัวอะไรด้วยอักษรภาษาอังกฤษตัวพิมพ์เล็ก เช่น a,b,c
  2. วิธีเขียนเซต มีอยู่ 3 แบบ
    • แบบข้อความ อธิบายเซตด้วยถ้อยคำ
    • แบบแจกแจงสมาชิก เขียนสมาชิกทั้งหมดภายใต้ปีกกา {} และใช้จุลภาคคั่งระหว่างคู่
    • แบบบอกเงื่อนไขของสมาชิก เขียนเซตในรูปแบบ {x | เงื่อนไขของ x}
  3. สมาชิกของเซตเป็นจำนวนหรือสิ่งใดก็ได้ เป็นเซตก็ได้
  4. เซตที่เท่ากัน เซตจะแตกต่างกันหรือไม่ขึ้นอยู่กับว่าสมาชิกต่างกันหรือไม่ โดยเซตสองเซตจะเท่ากันเมื่อมีสมาชิกเหมือนกัน
  5. เซตจำกัดและเซตอนันต์ เซตจำกัดคือเซตที่เราสามารถระบุได้ว่ามีสมาชิกกี่ตัว เซตอนันต์คือเซตที่ไม่ใช่เซตจำกัด
  6. เซตว่างคือเซตที่ไม่มีสมาชิกเลย
  7. เอกภพสัมพันธ์ คือเซตที่ใช้กำหนดขอบเขตของสิ่งที่กำลังพิจารณา แทนด้วย U
  8. เซตของจำนวนบางชนิด เช่น N = เซตของจำนวนนับ, I = เซตของจำนวนเต็ม, Q = เซตของจำนวนตรรกยะ, R = เซตของจำนวนจริง, C = เซตของจำนวนเชิงซ้อน
  9. สับเซต A เป็นสับเซตของ B หมายความว่าสมาชิกทุกตัวของ A เป็นสมาชิกของ B
  10. เพาเวอร์เซต ของ A คือเซตที่ประกอบด้วยสับเซตทั้งหมดของ A เขียนแทนโดย P(A)

[แก้] การดำเนินการของเซต

  1. ยูเนียน ของ A และ B คือเซตที่เกิดจากการรวบรวมสมาชิกของ A และ B เข้าไว้ด้วยกัน
  2. อินเตอร์เซกชัน ของ A และ B คือเซตที่ประกอบด้วยสมาชิกที่เหมือนกันของ A และ B
  3. ผลต่าง A – B คือเซตที่ประกอบด้วยสมาชิกของ A ที่ไม่ใช่สมาชิกของ B
  4. คอมพลีเมนต์ ของ A เขียนแทนด้วย A’ คือสับเซตของ U ที่ประกอบด้วยสมาชิกที่ไม่อยู่ ใน A

[แก้] การนับจำนวนสมาชิกของเซต

  1. ถ้า A เป็นเซตจำกัด เราใช้สัญลักษณ์ n(A) หรือ |A| แทนจำนวนสมาชิกของ A
  2. การนับจำนวนสมาชิกของ U ที่ไม่อยู่ใน A อาจใช้สูตร n(A’) = n(U)-n(A)

[แก้] สมบัติของเซตที่ควรทราบ

ภาพ:Sute.gif


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -