See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Cevov izrek - Wikipedija, prosta enciklopedija

Cevov izrek

Iz Wikipedije, proste enciklopedije

Cevov izrèk [čéjvov ~] v ravninski geometriji pravi, da tri prečnice trikotnika, ki izhajajo iz njegovih oglišč in se sekajo v eni točki, odrežejo odseke stranic, katerih zmnožki so enaki, oziroma še drugače, daljice AA', BB' in CC', ki povezujejo oglišča in nasprotne stranice, se sekajo v eni točki (so konkurentne), tedaj in le tedaj, če velja:

Cevov izrek, 1. primer: tri daljice tvorijo šop premic v točki znotraj trikotnika ABC
Cevov izrek, 1. primer: tri daljice tvorijo šop premic v točki znotraj trikotnika ABC
Cevov izrek, 2. primer: tri daljice tvorijo šop premic v točki O zunaj trikotnika ABC
Cevov izrek, 2. primer: tri daljice tvorijo šop premic v točki O zunaj trikotnika ABC
 {AC'\over C'B} {BA'\over A'C} {CB'\over B'A} = 1 \!\, .

Izrek je dokazal italijanski matematik Giovanni Ceva in ga leta 1678 objavil v svojem delu De lineis rectis. Pred njim ga je dokazal saragoški kralj Al-Mu'taman ibn Hűd v 11. stoletju.

Cevovemu izreku je enakovredna trigonometrična oblika: daljice AA', BB' in CC' tvorijo šop premic, če velja:

\frac{\sin\angle BAA'}{\sin\angle CAA'} \frac{\sin\angle ACC'}{\sin\angle BCC'} \frac{\sin\angle CBB'}{\sin\angle ABB'} = 1 \!\, .

Cevov trikotnik je trikotnik A'B'C', Cevov krog pa poteka skozi njegova oglišča.

[uredi] Posplošitve

Izrek se lahko posploši na večrazsežne simplekse s pomočjo baricentričnih koordinat. Cevov n-simpleks je šop iz vsakega oglišča v točko nasprotne n-1 strani (facete). Cevove premice tvorijo šop premic, če lahko maso porazdelimo v oglišča tako, da se vsaka Cevova premica seka z nasprotno faceto v njenem masnem središču. Presečišče Cevovih premic je masno središče simpleksa.

Za splošne mnogokotnike v ravnini je izrek znan že od začetka 19. stoletja. Izrek so posplošili tudi za trikotnike na drugih površinah s konstantno ukrivljenostjo.

[uredi] Glej tudi


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -