Codice Sconto: E463456

This WebPage/Resource is provided by https://www.classicistranieri.com

Kernspinresonanzspektroskopie – Wikipedia

Kernspinresonanzspektroskopie

aus Wikipedia, der freien Enzyklopädie

Ein 300-MHz-NMR-Spektrometer
Ein 300-MHz-NMR-Spektrometer

Die Kernresonanzspektroskopie (NMR-Spektroskopie von engl. nuclear magnetic resonance) ist eine der wichtigsten spektroskopischen Methoden zur Aufklärung der Struktur und Dynamik von Molekülen, insbesondere auch in der organischen Chemie und in der Biochemie. Für NMR-Messungen zugänglich sind Substanzen, in denen Atome mit ungradzahliger Nukleonenanzahl (Summe der Protonen und Neutronen) enthalten sind. Solche Atomkerne (z. B. des in der Natur weit verbreiteten Wasserstoff-Isotop 1H oder des Kohlenstoff-Isotops 13C) besitzen einen Kernspin und damit ein kernmagnetisches Moment. Nach ganz analogen Prinzipien wie bei der Kernspinresonanzspektroskopie wird auch die Messung von Elektronen in Molekülen durch die ESR-Spektroskopie vorgenommen.

Man kann jeden Atomkern mit magnetischem Moment als mikroskopisch sich um die eigene Achse drehenden kleinen Magneten, ähnlich einem Kreisel, auffassen. Jede elektrische Ladung (egal ob sie positiv oder negativ geladen ist), die sich um die eigene Achse dreht, erzeugt ein kleines Magnetfeld. Die Drehung der Atomkerne nennt man auch Kernspin. Ohne ein magnetisches Feld sind die Drehungen der vielen Elementarmagnete völlig ungeordnet in alle Raumrichtungen verteilt, so dass das magnetische Moment Null ist. Sobald jedoch ein Magnetfeld angelegt wird, orientieren sich die Kernspins -ähnlich einer Kompassnadel im Erdmagnetfeld - entsprechend dem angelegten Magnetfeld im Raum. Die Kernspins können bestimmte durch die Quantenmechanik bedingte Zustände einnehmen, die sich relativ zu einander durch sehr kleine Energieunterschiede auszeichnen. Beim Wasserstoffkern kann der Kernspin zwei Zustände (+1/2 und -1/2) einnehmen. Die Kernspins bei Wasserstoff orientieren sich im Magnetfeld entweder in Richtung des angelegten Magnetfeldes - er hat ein geringeres Energieniveau- oder gegen das angelegte Magnetfeld- er hat ein höheres Energieniveau. Durch Einstrahlung von Energie in Form einer Radiowelle (Continuous-Wave-Verfahren) können alle Kernspins in den höheren Energiezustand übergehen. Je nach Stärke des Magnetfeldes können nur bei einer ganz bestimmten Frequenz die Kernspins in ein höheres Energieniveau gehoben werden. Die Kernrotation bei Resonanzbedingungen, heißt Larmorfrequenz, sie läßt sich mathematisch aus dem Produkt vom angelegtem Magnetfeld und dem sogenannten gyromagnetischen Verhältnis geteilt durch 2*π berechnen. Schaltet man nun den Radiowellensender aus, so fallen die Kernspins vom höheren Energieniveau auf das tiefere Energieniveau zurück. Dabei entsteht elektromagnetische Wellenenergie einer ganz bestimmten Frequenz, die man mit einem Empfänger (z.B. einem Oszilloskop) bestimmen kann. Die Energieabstrahlung des Zurückfallens vom höheren in den energiearmen Zustand verläuft innerhalb einer sehr kurzen Periode (die sogenannte Relaxationszeit), sie beträgt bei Raumtemperatur bei den Protonen etwa ½ Sekunde. Mit einem Relais kann der Radiowellensender und der Detektor jedoch kontinuierlich betrieben werden.

Falls alle Kernspins von H-1 oder die C-13 die gleichen Kernspinresonanzen in einem Molekül hätten, wäre die Methode zur Strukturaufklärung wenig interessant. Tatsächlich weicht die Resonanzfrequenz der einzelnen H-1 oder C-1-Kerne je nach Lage zu funktionellen Gruppen oder bei Doppel-, Dreifachbindungen leicht voneinander ab, da die Elektronendichte um die Kerne herum das Magnetfeld unterschiedlich abschirmt. Ausserdem gibt es kleine Resonanz-Wechselwirkung über zwei Bindungen zwischen Protonen, man nennt diese Wechselwirkung chemische Kopplung. Aufgrund dieser Tatsachen wird die Kernresonanzspektroskopie zur Strukturaufklärung von Molekülen eingesetzt.

Inhaltsverzeichnis

[Bearbeiten] Anwendungsgebiete

NMR-Spektren können am einfachsten für Moleküle aufgenommen werden, die sich in Lösung befinden und die nicht mit paramagnetischen Substanzen in Wechselwirkung stehen. NMR-Spektroskopie an paramagnetischen Substanzen und an Festkörpern ist ebenfalls möglich, die Interpretation der Spektren und die Aufbereitung der Proben für die Messung sind aber in beiden Fällen deutlich komplexer. Bezüglich der NMR an Festkörpern vgl. auch Magic Angle Spinning.

Die hochauflösende Kernresonanzspektroskopie in Lösung wird heute in großem Maßstab für folgende Aufgaben verwendet:

  • Zum zerstörungsfreien Nachweis von Inhaltsstoffen einer Probe
  • Zur Bestimmung von Molekülstrukturen (von kleinen Molekülen bis hin zu Proteinen und Nukleinsäurefragmenten)
  • Zur Untersuchung von Wechselwirkungen zwischen Molekülen

Neben spektroskopischen Untersuchungen vermittelt auch die Bestimmung von Kernspin-Relaxationszeiten Informationen über die Struktur und Dynamik von Materialien.

Unterschiedliche Kernspin-Relaxationszeiten in verschiedenen biologischen Geweben bilden auch die Basis für die in der Medizin als bildgebendes diagnostisches Verfahren genutzte Magnetresonanztomographie (Kernspintomographie). Magnetresonanztomographie-Methoden finden außer in der medizinischen Diagnostik auch zunehmend Anwendungen in den Ingenieur- und Geowissenschaften.

[Bearbeiten] Methoden zur Strukturaufklärung in der organischen Chemie

Chemische Verschiebung und Integration von Signalen

Für eine leichtere Bestimmung der Resonanzfrequenzen, damit Signale aus Geräten unterschiedlicher Messfrequenz miteinander verglichen werden können, bezieht man alle Larmorfrequenzen von unterschiedlichen Wasserstoffkerne auf eine Standardsubstanz. Als guter Standard hat sich Tetramethylsilan (TMS) erwiesen. Einige Milligramm Tetramethylsilan sind als Standard bei jeder Messung mit enthalten. Die Methylgruppen des Tetramethylsilans haben nach der Definition eine chemische Verschiebung von Null.

Die chemische Verschiebung ist definiert als: δ (ppm) = ν H(gemessen) - νH (TMS) /Betriebsfrequenz in MHz.

Die chemische Verschiebungen von Wasserstoffkernen in organischen Molekülen wird durch die Art der funktionellen Gruppen beeinflußt . Je nach Art und Besonderheiten des Moleküls weichen die chemischen Verschiebungen trotz gleicher funktioneller Gruppen mitunter ganz leicht von einander ab, so dass die Anordnung aller chemischen Verschiebungen im NMR-Spektrum ganz charakteristisch für eine Substanz ist.


Bei jedem Signal einer Wasserstoffgruppe mit einer bestimmten chemischen Verschiebung kann auch die Anzahl der Wasserstoffatome anhand des Flächeninhalts unter dem Signals bestimmt werden. Durch ein elektronisches Verfahren, dass man Integration nennt, kann der Flächeninhalt eines Signals bestimmt werden. Die Integration von Signalen erfolgt durch einen elektronischen Signalschreiber am NMR-Spektrometer. Der Flächeninhalt spiegelt die Zahl der Wasserstoffatome in einem Molekül mit einer charakteristischen chemischen Verschiebung wider. Durch Auswertung des Integrals kann also beispielsweise bestimmt werden, wie viele Wasserstoffatome eines Moleküls sich an Methylgruppen, an Aromaten, an Carboxylgruppen, an Doppelbindungen usw. befinden. Diese Kenntnis ist für organische Chemiker bei der Bestimmung von neuen Strukturen äußerst wichtig.


Wasserstoffatome Chemische Verschiebung (δ)
H3C- 0,9
H3CCR=C 1,6
H3C-Ar 2,3
H3C-CO-R 2,2
H3C-OR 3,3
R2C-CH2-CR2 1,4
-C-CH2-Cl 3,6
R-CO2H 9 bis 13
ROH 0,5 bis 4,5
H-Ar 7,2

Chemische Kopplung

Die chemische Kopplung basiert auf dem Prinzip, dass sich die Wasserstoffkerne oder Kohlenstoffkerne über die chemischen Bindungen untereinander "wahrnehmen" und daher koppeln können. Wasserstoffatome am selben Kohlenstoffatom zeigen meist keine Kopplung. Die Kopplung reicht jedoch nur zum nächsten Nachbarkohlenstoffatom, der übernächste Nachbar wird in der Regel nicht mehr wahrgenommen und koppelt daher nicht. Ähnlich wie in einem Wohnblock, in dem man die nahe benachbarten Mieter noch kennt aber über entfernter lebende Bewohner keinerlei Ahnung hat, verhält es sich bei der chemischen Kopplung in der NMR-Resonanzspektroskopie. Da jedoch alle Kopplungen miteinander verbunden sind, d.h. jedes Kohlenstoffatom auch wieder Nachbarn hat, kann ein Chemiker aus einem NMR-Spektrum die gesamten Nachbarschafts- und Strukturverhältnisse eines organischen Moleküls durch die Kopplung erschließen.

  • Ein Beispiel:

Nimmt man als einfaches Beispiel das 1H-NMR-Spektrum von 1-Chlorethanol und Ethanol, so koppelt im Falle des 1-Chlorethanol die Methylgruppe mit dem einzelnen Wasserstoffkern der sich an dem Kohlenstoffatom mit der Hydroxylgruppe und dem Chlor befindet. Der Spin jedes einzelnen Wasserstoffkerns kann sich im energiereichen oder im energieärmeren Zustand befinden. Die beiden unterschiedlichen Magnetfelder, die der einzelne Wasserstoffkern erzeugt, führen zu einer Aufspaltung in zwei gleich große Signale bei der Methylgruppe. Man nennt die Aufspaltung in zwei gleichroße Signale ein Dublett, der Abstand zwischen den beiden Signalen heißt Kopplungskonstante (in diesem Falle ca. 7 Hz). Beim Ethanol „sieht“ die Methylgruppe zwei Wasserstoffkerne der Methylengruppe. Es entstehen zwei Dubletts. Wenn die Lage der rechte Seite des linken Dupletts genau mit der linken Seite des rechten Dubletts übereinstimmt, entsteht ein Triplett - also drei Signalpeaks - mit dem Flächenverhältnis von 1:2:1 und einer Kopplungskonstante von 7 Hz. Die Methylengruppe im Ethanol „sieht“ die benachbarten 3 Wasserstoffkerne der Methylgruppe als Quartett - es zeigen sich vier Signalpeaks - mit einer Aufspaltung im Verhältnis von 1:3:3:1. Der Wasserstoffkern der Hydroxylgruppe koppelt nicht, er erscheint als Singulett.


Für den Erhalt von Strukturinformationen bei sehr komplexen Molekülen kann auch ein Singnal "entkoppelt" werden, d.h. man hebt durch Einstrahlung einer bestimmten Frequenz die Kopplung zu seinen Nachbarn auf, dadurch verändert sich das Kopplungsmuster der Kernspins der näheren Umgebung.

[Bearbeiten] Funktionsprinzip

Die bereits angesprochene Abhängigkeit der Energieniveaus der Kernspins von der Molekülstruktur rührt in erster Linie von der Wechselwirkung der Elektronenstruktur der Moleküle mit dem äußeren Magnetfeld her: Hierdurch entsteht in der Elektronenhülle ein Induktionsstrom, welcher wiederum ein Magnetfeld erzeugt, das dem äußeren entgegen gerichtet ist. Dadurch wird das Magnetfeld am Atomkern geschwächt, die Frequenz der für den Übergang notwendigen Strahlung ist also kleiner als im Falle eines nackten Atomkerns. Die Differenz heißt chemische Verschiebung und wird üblicherweise im Verhältnis zur für den nackten Atomkern nötigen Frequenz angegeben. Chemische Verschiebungen liegen üblicherweise im Bereich von 0–5000 ppm.

Das magnetische Feld wird am Atomkern durch die Ausrichtung weiterer magnetischer Momente in der unmittelbaren Umgebung beeinflusst. Befindet sich beispielsweise ein Kern mit zwei Ausrichtungsmöglichkeiten in der Nähe, so kann dieser das Feld verstärken oder abschwächen. Dies führt zu einer Aufspaltung des Signals, man spricht von einer Kopplung. Weil die chemische Verschiebung im wesentlichen von der Elektronendichte am Atomkern abhängt, kann man für Atomkerne in chemisch ähnlichen Umgebungen auch ähnliche Verschiebungen erwarten. Aus der Kopplung erhält man zusätzlich Informationen über Nachbarschaftsbeziehungen zwischen verschiedenen Kernen in einem Molekül. Beides zusammengenommen liefert wesentliche Hinweise über die Struktur des gesamten Moleküls.

Atomkerne mit einer ungeraden Protonen- und/oder Neutronen-Zahl besitzen einen Kernspin I. Dieser kann ganz- und halbzahlige Werte (z. B. 1/2, 1, 3/2,…9/2) annehmen, bei Isotopen mit gerader Protonen- und Neutronenzahl (sogenannten gg-Kernen) ist er 0. Von Null verschiedene Kernspins gehen mit einem magnetischen Dipolmoment einher. Die Größe dieses Dipolmoments wird durch das gyromagnetische Verhältnis des betreffenden Isotops beschrieben. In einem äußeren, statischen Magnetfeld richten sich magnetische Kernmomente entsprechend den Regeln der Quantenmechanik aus. Ein Atomkern mit I = 1/2 hat die Form einer Kugel, Kerne mit I > 1/2 haben eine ellipsoidische Form und haben daher zusätzlich ein elektrisches Quadrupolmoment „eQ“, welches mit elektrischen Feldgradienten wechselwirken kann (siehe auch NQR). Diese zusätzliche starke, elektrische Wechselwirkungsmöglichkeit führt zu breiten NMR-Resonanzlinien, die komplizierter zu interpretieren sind als die schmalen, durch gut auflösbare Kopplungen strukturierten Resonanzlinien der Spin-1/2-Kerne.

Die am meisten für die chemische Strukturaufklärung genutzten Isotope sind daher Kerne mit Spin 1/2. Hierzu gehören unter anderem die Nuklide 1H, 13C, 15N, 19F, 29Si und 31P. Spin-1/2 Kerne können nur zwei diskrete Zustände annehmen, nämlich entweder parallel oder antiparallel zum äußeren Magnetfeld. Zwischenstellungen sind quantenmechanisch verboten. Die zwei Anordnungsmöglichkeiten entsprechen zwei unterschiedlichen Energiezuständen.

Die Energiedifferenz zwischen diesen beiden Zuständen ist proportional zur Stärke des Magnetfelds am Kernort. Der Proportionalitätsfaktor ist dabei das gyromagnetische Verhältnis des betreffenden Isotops. Übergänge zwischen den beiden Orientierungen der Kernmomente können durch die Einstrahlung resonanter magnetischer Wechselfelder ausgelöst werden. Die Resonanzfrequenz ist der Energieaufspaltung zwischen den beiden Kernspins proportional und wird auch als Larmorfrequenz bezeichnet.

Spindiagramm eines Atoms und mehrerer Atome
Spindiagramm eines Atoms und mehrerer Atome

Veranschaulichen lässt sich dies durch das nebenstehende Diagramm. Hierbei denkt man sich ein Koordinatensystem mit dem äußeren Magnetfeld entlang der z-Achse. Ein Atomkern mit einem Spin von 1/2 richtet sich mit einem Spin-Vektor entweder parallel oder antiparallel zum äußeren Feld aus. Wenn man nun die Vektoren mehrerer Atome in dieses Koordinatensystem aufnimmt, entstehen zwei Kegel, jeweils einer für parallel und antiparallel. Infolge des Energie-Unterschieds zwischen der parallelen und der antiparallelen Orientierung der magnetischen Kernmomente gibt es im thermischen Gleichgewicht einen Besetzungsunterschied zwischen den beiden Orientierungen. Dieser folgt in Hochtemperatur-Näherung der Boltzmann-Verteilung und bewirkt eine Überschussmagnetisierung in positiver Richtung entlang der z-Achse.

Das NMR Signal kommt dadurch zustande, dass man die zu untersuchende Probe im Magnetfeld einem Radiofrequenz-Puls aussetzt. Dabei werden die Spins der einzelnen Atome durch das Magnetfeld des Pulses beeinflusst, so dass sich der Gesamtvektor in x,y-Richtung verschiebt. Er liegt nun nicht mehr parallel zur z-Achse sondern ist um einen Winkel ausgelenkt, der proportional zur Dauer und Intensität der Radiofrequenzpulses ist. Typisch sind Pulslängen von etwa 1–10 µs. Eine maximale Quermagnetisierung senkrecht zur z-Achse wird bei einem Auslenkungswinkel von 90° erreicht.

Diese Quermagnetisierung verhält sich wie ein magnetischer Kreisel und präzediert in der Ebene senkrecht zum statischen Magnetfeld. Diese Präzessionsbewegung macht sich als sehr schwaches magnetisches Wechselfeld bemerkbar, das mittels geeigneter Verstärker gemessen wird. Nach Beenden der resonanten Einstrahlung treten zwei Prozesse, sogenannte Relaxationsprozesse, ein, durch die die Quermagnetisierung wieder abnimmt. Das NMR-Signal wird also nach Beenden des Radiofrequenzpulses als Freier Induktionszerfall (FID; von englisch: free induction decay) gemessen. Die Zeitkonstante T2* dieses freien Induktionszerfalls hängt von der transversalen Relaxationszeit T2 sowie von der Homogenität des Magnetfelds ab. Für leicht bewegliche Flüssigkeiten in homogenen Magnetfeldern kann sie im Bereich von mehreren Sekunden liegen. Der FID wird durch die Frequenzunterschiede infolge von chemischer Verschiebung und Kopplung moduliert. Durch eine Fourier-Transformation kann die Verteilung der verschiedenen Frequenzen aus dem FID berechnet werden. Dies ist dann das NMR-Spektrum. Das NMR-Spektrum liefert in vielen Fällen einen eindeutigen „Fingerabdruck“ des jeweiligen Moleküls. Zusammen mit Informationen aus weiteren Messungen wie z. B. der Massenspektrometrie kann aus den Spektren Strukturaufklärung die chemische Struktur einer unbekannten Substanz bestimmt werden.

Kommerzielle NMR-Spektrometer für die chemische Strukturaufklärung arbeiten üblicherweise bei Feldstärken zwischen 7 und 21 Tesla. Für 1H entsprechen die Resonanzfrequenzen (Larmorfrequenzen) dann zwischen 300 und 900 MHz. Da 1H der wichtigste NMR-Kern ist, wird die Feldstärke von Spektrometern gewöhnlich in dessen Larmorfrequenz ausgedrückt. Bei 1H beträgt die Aufspaltung der Spektren infolge unterschiedlicher chemischer Verschiebungen ca. 10 ppm. Dies entspricht also einer maximalen Bandbreite von ca. 3 kHz bei einer NMR-Frequenz von 300 MHz. Die Frequenzbandbreite der NMR-Spektren infolge der chemischen Verschiebung wächst proportional zum Magnetfeld an. Die chemische Verschiebung selbst ist als Verhältnis der Differenz der Resonanzfrequenz des Kerns in einer bestimmten chemischen Umgebung und der Resonanzfrequenz in einer Referenzverbindung zur Resonanzfrequenz selbst definiert. Dies erlaubt einen einfachen Vergleich zwischen NMR-Spektren, die bei verschiedenen Feldern gemessen wurden. Für Wasserstoff und Kohlenstoff wird Tetramethylsilan (TMS)) als Referenzsubstanz genommen. Der Bereich von chemischen Verschiebungen für Kohlenstoff und viele andere Kerne ist wesentlich breiter als für Wasserstoff und kann mehrere 100 ppm betragen. Bei einigen sehr schweren Kernen wie z. B. 207Pb werden auch chemische Verschiebungen im Bereich von % beobachtet.

[Bearbeiten] Empfindlichkeit

Ein inhärentes Problem der NMR-Spektroskopie ist ihre vergleichsweise geringe Empfindlichkeit (schlechtes Signal-Rausch-Verhältnis). Für Messungen sind je nach Experiment und Messzeit ca. 10 nmol bis 1 µmol Substanz notwendig (typische Probenmenge: 1 mL einer Lösung mit einer Konzentration von 10 µmol/L bis 1 mmol/L).

Ursache dafür sind die durch die Boltzmannverteilung festgelegten geringen Besetzungsunterschiede der Energieniveaus:

 \frac { p_\alpha } { p_\beta }\ = e^{ \big( \frac{E_\beta - E_\alpha}{kT}\ \big)}

Mit dieser Gleichung wird das Besetzungsverhältnis  \left(p_\alpha/p_\beta\right) der beiden beteiligten Energiezustände durch deren Energiedifferenz im Verhältnis zur thermischen Energie bei gegebener Temperatur T ausgedrückt. Darin ist k die Boltzmann-Konstante. Die Energiedifferenz entspricht dabei der Energie eines Lichtquants ( \mathit{h} \cdot \nu ), das ein Teilchen vom günstigeren in den ungünstigeren Zustand befördert (Grundgleichung der Spektroskopie). Bei einer Resonanzfrequenz von 600 MHz und einer Temperatur von 0 °C bzw. 273 K ergibt sich also ein Wert etwa e0,0001, also etwa gleich eins; d. h., es sind schon im thermischen Gleichgewicht fast gleich viele Kerne im angeregten Zustand wie im Grundzustand – die Wärme sorgt dafür! Zum Vergleich: Sichtbares Licht besitzt um einen Faktor von etwa 1 Million höhere Frequenzen. Folglich haben Übergänge, die durch sichtbares Licht angeregt werden Besetzungsunterschiede von etwa e100, d. h. praktisch alle Teilchen sind im Grundzustand, was die Spektroskopie im sichtbaren Bereich wesentlich empfindlicher macht.

Um die Empfindlichkeit zu steigern, werden verschiedene Wege eingeschlagen:

  • Messung möglichst empfindlicher Kernsorten (besonders 1H)
  • Mehrfache Messung einer Probe und Addition aller Spektren
  • Einsatz stärkerer Magneten (supraleitende Magnete).
  • Elektronisches Rauschen durch Kühlung der Empfänger verringern (Cryoelektronik).
  • Anreicherung mit magnetischen Kernen, deren natürliche Häufigkeit gering ist (z. B. 13C bzw. 15N). Das wird z. B. bei Proteinen oft gemacht.

[Bearbeiten] Puls-Fourier-Transform NMR

FID
FID

Heutzutage arbeiten alle modernen NMR-Spektrometer mit der Puls-Technik. Diese Messtechnik hat das früher verwendete CW-Verfahren (engl. continous wave) fast völlig verdrängt, bei dem eine andauernde Einstrahlung von Radiowellen niedriger Intensität erfolgt, während das Magnetfeld langsam variiert wird (oder wesentlich seltener bei konstantem Magnetfeld die Frequenz der Radiowellen).

Ein einzelner Radiofrequenzimpuls (RF-Puls) oder eine Sequenz von RF-Pulsen wird auf die Probe gesandt, die sich in einem starken Magnetfeld befindet. Das FID-Signal nach einer Pulssequenz wird als Funktion der Zeit registriert. Durch Fourier-Transformation wird das Zeitsignal im Computer in das Frequenzspektrum transformiert.

[Bearbeiten] Experimentelle Größen

  • Die chemische Verschiebung einer Resonanz ist vom lokalen Magnetfeld am Kernort abhängig, das wiederum von der chemischen Umgebung des betrachteten Kerns abhängt.
  • Die Intensität einer Resonanz ist proportional zur Konzentration.
  • Bei den Relaxationszeiten angeregter Zustände unterscheidet man zwischen longitudinaler Relaxationszeit (Spin-Gitter-Relaxation) und transversaler Relaxationszeit (Spin-Spin Relaxation). Longitudinale Relaxationszeiten bestimmen die Einstellung der Gleichgewichtsmagnetisierung. Die transversalen Relaxationszeiten bestimmen die Linienbreite der Resonanzlinien. Relaxationseffekte geben Aufschluss über vorhandene Wechselwirkungen und molekulare Bewegungen.
  • Räumlich benachbarte Kerne wechselwirken miteinander über magnetische Dipol-Dipol-Wechselwirkung (dipolare Kopplung). Diese Wechselwirkung verschwindet in isotropen Lösungen im zeitlichen Mittel.
  • Indirekt können Kerne auch über chemische Bindungen miteinander wechselwirken. Diese skalare Kopplung ist für die Aufspaltung der Signale in Multipletts verantwortlich und stellt eine wesentliche Grundlage für die molekulare Strukturbestimmung mit NMR dar. Der Abstand zweier benachbarter Linien eines Multipletts wird als Kopplungskonstante, die in Hertz gemessen wird, bezeichnet.

[Bearbeiten] Eindimensionale NMR-Spektroskopie

Typisches NMR-Spektrum
Typisches NMR-Spektrum

Die eindimensionale NMR-Spektroskopie ist die am häufigsten angewandte Strukturaufklärungsmethode der Chemie. Bei ihr wird die chemische Verschiebung eines Atoms von einer Referenzsubstanz gemessen. 1H und 13C sind die Kerne, die am häufigsten in der organischen Chemie gemessen werden, aber auch 15N, 31P, 19F und viele andere NMR-aktive Isotope können spektroskopiert werden.

Quartett-Aufspaltung
Quartett-Aufspaltung

Das Aussehen der Spektren hängt entscheidend von der Aufnahmeart ab. 1H-Spektren werden in der Regel nicht Breitband-entkoppelt aufgenommen. Damit haben alle Wasserstoffatome die Möglichkeit ihren Spin mit anderen Kernen zu koppeln, die sogenannte Spin-Spin-Kopplung. Damit entsteht bei der charakteristischen chemischen Verschiebung eines Atoms eine für seine Umgebung charakteristische Aufspaltung des Signals, aus der Informationen über die Molekülstruktur abgeleitet werden können.

13C, 15N, 31P, 19F und andere Kerne werden häufig 1H-Breitband-entkoppelt aufgenommen, so dass die Aufspaltung der Signale aufgrund der Kopplungen zu 1H-Kernen ausbleibt.

[Bearbeiten] Spin-Spin-Kopplung

Der Kern eines Atoms kann mit einem benachbarten Atomkern in Wechselwirkung treten. Das kann entweder direkt (durch den Raum) oder indirekt (über die Bindungselektronen zwischen den Kernen) geschehen. Bei einer flüssigen Probe spielt die direkte Kopplung nur eine untergeordnete Rolle, hier treten vor allem Kopplungseffekte über die Bindungen hinweg auf. Die Kopplung entsteht weil sich die Spins der Bindungselektronen in Nachbarschaft zu einem Kernspin in charakteristischer Weise ausrichten. Der Kern am anderen Ende der Bindung erfährt seinerseits diese Einflussnahme auf die Elektronenspins und nimmt dazu eine antiparallele oder parallele Orientierung ein. Damit gibt es für zwei Kernspins A und B vier Möglichkeiten der Ausrichtung zueinander: (↑↓), (↓↑), (↑↑) und (↓↓).

Abhängig von der Orientierung zum äußeren Magnetfeld wird das effektive Magnetfeld am Kern selber entweder verstärkt(beide Elektronenspins parallel zum Magnetfeld ausgerichtet), abgeschwächt oder nicht beeinflusst (ein Spin in, der andere entgegen der Feldrichtung). Da die Kombinationen (↑↓) und (↓↑) energetisch identisch sind, zeigt der Kern Resonanz bei drei Frequenzen. Im Spektrum führt das zu einer Aufspaltung des Signals in drei einzelne Signale. Sind außer dem einen benachbarten Kern noch weitere vorhanden, führt das entsprechend den zusätzlichen Kombinationsmöglichkeiten zu einer weiteren Aufspaltung des Signals. Dabei lässt sich die Anzahl der Signale, die sogenannte Multiplizität, allgemein mit der Formel 2nI+1 berechnen. Darin ist I der Kernspin des betrachteten Kerns und n die Anzahl chemisch äquivalenter koppelnder Kerne. Die relative Intensität der einzelnen Signale kann man dem Pascalschen Dreieck entnehmen.

Sind in obigem Zwei-Kern-Beispiel beide Kerne in einer gleichen chemischen Umgebung so sind außerdem die Kombinationen (↑↑) und (↓↓) energetisch nicht zu unterscheiden. Man beobachtet nur noch zwei Signale.

Für den Fall, dass ein Kern mit mehreren Kernen unterschiedlicher chemischer Umgebung koppelt, werden die Multiplizitäten die man für die unterschiedlichen chemischen Umgebungen berechnet noch einmal miteinander multipliziert. Koppelt beispielsweise ein Kern (I=1/2) mit zwei Kernen die ihrerseits chemisch äquivalent sind und drei weiteren die wiederum untereinander chemisch äquivalent sind so ergibt sich zunächst für die Kopplung mit den zwei Kernen M=3 und für die drei anderen M=4. Diese Multiplizitäten werden nun multipliziert, womit das Signal des Kerns in zwölf Signale aufspaltet.

[Bearbeiten] Beispiel: Propan und Ethanol

Als ein einfaches Beispiel dient Propan (H3C–CH2–CH3): Die CH2-Gruppe beim Propan hat zwei benachbarte Methylgruppen (–CH3), dies entspricht sechs benachbarten, äquivalenten H-Atomen. Das Signal wird also in ein Septett aufgespaltet. Bei nichtäquivalenten H-Atomen werden die Nachbaratome einzeln betrachtet, dabei könnte es zu einer Überlagerung der einzelnen Peaks kommen. Um solche Fälle besser auflösen zu können, wird hierfür vielfach auf mehrdimensionale NMR-Techniken wie COSY zurückgegriffen. Der Abstand der einzelnen Peaks in einem Multiplett wird als Kopplungskonstante J bezeichnet. Sie ist unabhängig von dem außen angelegten Magnetfeld.

Die Intensität der einzelnen Signale innerhalb des Multipletts wird durch das Pascalsche Dreieck vorgegeben.

Erklärungen zum Spektrum von Ethanol:

Die OH-Gruppe bildet nur ein Singulett, wenn das Ethanol in wässriger Lösung vorliegt. Das alkoholische Wasserstoffatom ist leicht acid, und kann deswegen ständig durch Wasserstoffatome aus dem Lösungsmittel ausgetauscht werden. Das führt dazu, dass keine permanenten Spin-Spin-Kopplungseffekte auftreten. In reinem Ethanol würde dort, wegen der CH2-Gruppe wie erwartet (M=n+1), ein Triplett entstehen.

[Bearbeiten] Beispiele zweidimensionaler NMR-Spektroskopie

COSY (engl. correlation spectroscopy)
Zweidimensionale Methode, bei der gleichartige Kerne (1H) über ihre skalaren Kopplungen miteinander korreliert werden. COSY-Spektren sind symmetrisch bezüglich der Diagonalen. Mit COSY können komplizierte Kopplungsmuster räumlich entzerrt werden.
DOSY (engl. diffusion ordered spectroscopy)
ist ein Verfahren, bei dem durch das Anlegen von Feldgradienten Moleküle mit unterschiedlichem Diffusionsverhalten NMR-spektroskopisch getrennt erfasst werden können.
TOCSY (engl. total correlated spectroscopy)
Zweidimensionale Methode, bei der gleichartige Kerne (1H) über ihre skalaren Kopplungen miteinander korreliert werden. TOCSY-Spektren sind wie COSY-Spektren symmetrisch bezüglich der Diagonalen. Zusätzlich zu den im COSY detektierten Signalen erscheinen im TOCSY auch Korrelationen zwischen dem Startkern und sämtlichen indirekt über mehrere Kopplungen mit ihm verbundenen Kernen (Spinsystem). Das TOCSY-Experiment ist vor allem bei der Strukturaufklärung hochmolekularer Substanzen mit räumlich begrenzten Spinsystemen, wie etwa Polysacchariden oder Peptiden, sehr nützlich.
HSQC (engl. heteronuclear single quantum coherence)
Zweidimensionale Methode, bei der chemische Verschiebungen unterschiedlicher miteinander skalar koppelnder Nuklide korreliert werden. Die HSQC-Spektren sind häufig recht übersichtlich, da gewöhnlich nur Signale von direkt aneinander gebundenen Atomen erscheinen. Typische Beispiele sind 1H,13C- und 1H,15N-Korrelationen.
HMBC (engl. heteronuclear multiple bond coherence)
Zweidimensionale Methode, bei der chemische Verschiebungen unterschiedlicher miteinander skalar koppelnder Nuklide korreliert werden. Im Gegensatz zum HSQC werden im HMBC Korrelationen über mehrere Bindungen angezeigt. Typisch sind vor allem 1H,13C-Korrelationen.
NOESY (engl. nuclear overhauser enhancement spectroscopy)
Zweidimensionale Methode, mit der Korrelationen über den Kern-Overhauser-Effekt (NOE) anstatt über skalare Kopplungen detektiert werden. Mit dieser Methode können räumlich benachbarte Kerne erkannt werden, auch wenn sie nicht skalar miteinander koppeln. Es gibt sowohl homo- als auch heteronukleare Versionen. Dieses Verfahren wird häufig in der Strukturaufklärung eingesetzt.

[Bearbeiten] Historische Entwicklung

Als Ursprung der NMR muss man wohl den experimentellen Nachweis des Protonenspins durch Otto Stern im Jahr 1933 mit einem Molekularstrahlexperiment sehen. Stern hatte bereits vorher zusammen mit Walther Gerlach das berühmte Stern-Gerlach-Experiment entwickelt, mit dem sie 1922 in Frankfurt den schon länger postulierten Elektronenspin nachwiesen. Sie konnten zeigen, dass zunächst ein Strahl von Silberatomen, später dann ein Protonenstrahl, durch ein Magnetfeld in zwei Hälften geteilt wird, die den beiden Spinzuständen zugeschrieben wurden. Stern erhielt für diese Arbeiten den Nobelpreis 1943. Die ersten NMR- und ESR-Experimente führte Isidor Isaac Rabi (Nobelpreis für Physik 1944) mit modifizierten Stern-Gerlach-Anordnungen durch. Er konnte zeigen, dass einer der Halbstrahlen verschwand, wenn man auf ihn mit Hilfe einer Spule ein elektromagnetisches Wechselfeld geeigneter Frequenz (nämlich der Larmorfrequenz) einstrahlte. Das erste erfolgreiche Magnetresonanzexperiment in kondensierter Materie wurde 1944 von E. K. Zavoisky in Kasan an der Wolga durchgeführt. Es handelte sich allerdings nicht um ein NMR-, sondern um ein ESR-Experiment. 1946 veröffentlichten Felix Bloch und Edward Mills Purcell unabhängig voneinander erstmals erfolgreiche NMR-Experimente in flüssiger und fester Phase (Nobelpreis für Physik 1952). Die ersten erfolgreichen NMR-Experimente in Europa wurden 1946 von Harry Pfeiffer in Leipzig durchgeführt.

Nachdem kurz darauf die Aufspaltung der Spektren durch chemische Verschiebung und skalare Kopplung erkannt wurde, begann die NMR sich zu einer wichtigen Methode in der chemischen Strukturaufklärung zu entwickeln. Zunächst wurde hauptsächlich die CW-Methode (engl. continuous wave) benutzt, bei der durch Variation der Frequenz oder des Feldes die Resonanzen nacheinander angeregt wurden. 1947 reichten Russell Varian und Felix Bloch ein Patent ein für das erste NMR-Spektrometer. Das erste kommerzielle NMR-Spektrometer wurde dann 1952 von Varian Associates in Palo Alto gebaut. Um 1955 kam die japanische Firma Jeol hinzu und baute ebenfalls NMR-Spektrometer.

Da die CW-Technik allerdings durch ihr schlechtes Signal-Rausch-Verhältnis gekennzeichnet war, entwickelte ab Mitte der 1960er Jahre Richard R. Ernst (Nobelpreis für Chemie 1991) bei der Firma Varian ein Puls-Fourier-Transformation-NMR-Spektrometer (FT-NMR), das eine wesentlich schnellere Aufnahme der Spektren ermöglichte, welche – bei gleicher Messzeit – im Vergleich zu den CW-Spektrometern eine wesentliche Steigerung der Empfindlichkeit (des Signal-Rausch-Verhältnisses) bedeutet. Die ersten kommerziellen NMR-Impulsspektrometer wurden Mitte der 1960er Jahre von der deutschen Firma Bruker (gegründet von Prof. Günther Laukien, einem der NMR Pioniere in Deutschland) in Karlsruhe gebaut. Es folgte die Einführung von Breitbandentkopplung und von Mehrpulsverfahren. Nach einer Idee von Jean Jeener wurden ab Anfang der 1970er Jahre Mehrpulsexperimente mit einer systematisch variierten Wartezeit zwischen zwei Pulsen entwickelt, die nach Fourier-Transformation über zwei Zeitdomänen zu zweidimensionalen Spektren führten. Die Erweiterung zu drei und mehr Dimensionen folgte.

Kurt Wüthrich und viele andere bauten diese 2D- und Multi-Dimensions-NMR zu einer mächtigen Analysetechnik der Biochemie aus, insbesondere zur Strukturanalyse von Biopolymeren wie Proteinen. Wüthrich bekam für diese Arbeiten 2002 den Nobelpreis in Chemie. Im Gegensatz zur Röntgenstrukturanalyse liefert die NMR-Spektroskopie Strukturen von Molekülen in wässriger Lösung. Von besonderer Bedeutung ist die Möglichkeit, detaillierte Informationen über die Moleküldynamik mit Hilfe von Relaxationsparametern zu gewinnen.

[Bearbeiten] Auswertungs-Software

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks

[Bearbeiten] Literatur

  • Malcom H. Lewitt: Spin Dynamics. 1. Auflage. Wiley&Sons, Chichester 2001, ISBN 978-0471489221.
  • Harald Günther: NMR-Spektroskopie. 3. Auflage. Thieme, Stuttgart 1992, ISBN 978-3134875034.
  • Ullmanns Enzyklopädie der Technischen Chemie, 4. Auflage, Band 5, S. 382 ff.
  • A. Streitwieser, Jr, C.H. Heathcock, Organische Chemie, Verlag Chemie, Basel 1980, S. 205-249
  • Dudley H. Williams, Ian Fleming, Spektroskopische Methoden zur Strukturaufklärung, Kernmagnetische Resonanz-Spektren, George Thieme Verlag, Stuttgart 1975, S.80-161

Codice Sconto: E463456

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -