We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Spektroskopia NMR - Wikipedia, wolna encyklopedia

Spektroskopia NMR

Z Wikipedii

Umieszczanie probówki z próbką w spektrometrze 800 MHz w pracowni NMR w Pacific Northwest National Laboratory (USA)
Umieszczanie probówki z próbką w spektrometrze 800 MHz w pracowni NMR w Pacific Northwest National Laboratory (USA)
Aparat MRI
Aparat MRI
Animowana sekwencja przekrojów strzałkowych ludzkiego mózgu wykonana techniką MRI
Animowana sekwencja przekrojów strzałkowych ludzkiego mózgu wykonana techniką MRI

Spektroskopia NMR, Spektroskopia Magnetycznego Rezonansu Jądrowego (ang. Nuclear Magnetic Resonance – potocznie w języku polskim: rezonans magnetyczny z pominięciem słowa "jądrowy", który większości ludzi może się źle kojarzyć, dlatego w medycynie zdecydowano się na krótszą nazwę oraz skrót MR, w chemii używa się pełnej nazwy – jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie.

Spektroskopia ta polega na wzbudzaniu spinów jądrowych znajdujących się w zewnętrznym polu magnetycznym poprzez szybkie zmiany pola magnetycznego, a następnie rejestrację promieniowania elektromagnetycznego powstającego na skutek zjawisk relaksacji, gdzie przez relaksację rozumiemy powrót układu spinów jądrowych do stanu równowagi termodynamicznej. NMR jest zatem jedną ze spektroskopii absorpcyjnych.

W biochemii wykorzystuje się metodę rezonansu jądrowo-magnetycznego – jest to metoda oznaczania zawartości wody i suchej substancji w produktach spożywczych. Wykorzystuje ona zjawisko pochłaniania energii pola elektromagnetycznego w zakresie fal radiowych przez jądra atomów wodoru (z wody) znajdujących się w badanym materiale. Metoda NMR jest jedną z dokładniejszych metod, dzięki której możemy otrzymać najwięcej powtarzających się wyników. Nadaje się ona do oznaczania zawartości wody w przedziale od 3 do 100%.

W medycynie zjawisko rezonansu magnetycznego stosuje się w ramach jednej z technik tomograficznych, którą nazywa się obrazowaniem rezonansu magnetycznego (MRI (ang. Magnetic Resonance Imaging lub znacznie rzadziej MRT, ang. Magnetic Resonance Tomography).

Spis treści

[edytuj] Podstawy fizyczne

Niezerowy spin jądrowy posiadają praktycznie wszystkie atomy o nieparzystej liczbie nukleonów (np. wodór 1-H, węgiel 13-C, azot 15-N, tlen 17-O, fluor 19-F, sód 23-Na i fosfor 31-P). W bardzo dużym uproszczeniu spin jądrowy można sobie wyobrazić jako rotowanie jądra wokół własnej osi. Jest on związany z wewnętrznym momentem pędu jądra. Każde jądro jest obdarzone dodatnim ładunkiem elektrycznym, stąd jego spin generuje bardzo słabe pole magnetyczne i jest źródłem momentu magnetycznego μ.

Podstawą zjawiska NMR jest oddziaływanie spinów jądrowych z polami magnetycznymi:

  • stałym polem magnetycznym \vec B_z, które jest wytwarzane magnesami (oś Z jest osią magnesu spektrometru, w literaturze często zamiast \vec B_z pisze się \vec B_0 ),
  • zmiennym polem magnetycznym \vec B_{xy}(t), skierowanym prostopadle do osi Z (generowanym przez fale elektromagnetyczne w cewce spektrometru, w literaturze \vec B_{xy} określane jest jako \vec B_1),
  • zmiennymi polami lokalnymi generowanymi przez sąsiednie jądra atomów oraz znajdujące się na nich chmury elektronowe.

W stałym polu magnetycznym \vec B_0, [spin jądrowy] (s = 1/2) posiada dwie możliwe orientacje odpowiadające energii potencjalnej jądrowego momentu magnetycznego μ w polu magnetycznym \vec B_0. Dla spinów połówkowych mamy dwa kierunki spinu względem pola: "w górę" lub "w dół". W mechanice kwantowej tym kierunkom odpowiadają dwa poziomy energetyczne, czyli dwa stany własne z-towej składowej operatora momentu pędu jądra \hat I_z. Stanom własnym energii odpowiadają tzw. populacje, opisane statystyką Boltzmanna. W temperaturach pokojowych, w stanie równowagi termodynamicznej istnieje tylko niewielka nadwyżka spinów (ok. 1 na 100 tys.) znajdujących się w stanie o niższej energii (zgodnie z polem \vec B_0) i tylko te spiny możemy zaobserwować eksperymentalnie.

Dodatkowym zjawiskiem, bez którego zjawisko NMR nie miałoby miejsca, jest tzw. precesja Larmora, będąca ruchem wektora magnetyzacji \vec M=\vec M_x + \vec M_y + \vec M_z dookoła pola magnetycznego. Precesja jest na ogół złożeniem wielu ruchów i często jest ona porównywana do ruchu bąka wytrąconego z równowagi. Fenomenologiczny opis ruchu wektora magnetyzacji opisany został w 1946 roku przez jednego z dwóch odkrywców NMR Felixa Blocha (równania Blocha).

U podstaw precesji Larmora w zewnętrznym polu \vec B_z leży fakt, że spin skierowany w kierunku płaszczyzny XY (tj. niebędący w stanie podstawowym), obraca się dookoła osi Z. Mówimy, że taki spin skierowany w kierunku innym niż oś Z, jest w stanie superpozycji stanów własnych. Z mechaniki kwantowej wynika, że superpozycje stanów własnych są niestacjonarne, czego konsekwencją jest obrót spinu dookoła osi Z (cykliczne reguły komutacyjne i grupy obrotu).

Częstość obrotu spinu w stanie superpozycji jest proporcjonalna do tzw. współczynnika magnetogirycznego (giromagnetycznego) γ i indukcji stałego pola \vec B a częstość Larmora dana jest zależnością \omega_L=-\gamma \vec B

Aby zmienić stan spinu, wprowadza się zmienne pole magnetyczne \vec B_1 o częstości równej precesji Larmora i skierowane w kierunku osi X lub Y. Rezonans polega na tym, że z punktu widzenia spinu, tylko dla określonej częstości tego zmiennego pola "widzi" on dodatkowe statyczne pole, tzw. pole efektywne \vec B_{eff}, dookoła którego również zaczyna się kręcić. Ze względu na fakt, że pole \vec B_1 jest niezwykle słabe w stosunku do pola \vec B_z częstość precesji jest w zakresie kilku kHz.

W ten oto sposób można zmienić orientację spinu, a tym samym kierunek całej magnetyzacji. Rejestracja sygnału NMR polega na obróceniu magnetyzacji na płaszczyznę, w której znajduje się cewka odbiorcza (płaszczyzną detekcji jest płaszczyzna XY). Obracająca się w płaszczyźnie detekcji magnetyzacja indukuje w cewce prąd, który może być zarejestrowany przez aparaturę. Sygnały NMR są niezwykle słabe.

Historyczna już metoda NMR, tzw. metoda fali ciągłej (CW Continuous Wave), obserwowała jedynie absorpcję pola o częstościach radiowych, w tym celu płynnie zmieniano pole magnetyczne przy stałej częstotliwości pola radiowego (lub odwrotnie). Współczesne metody impulsowe stosują krótkie impulsy pola, nazywane potocznie radioimpulsami. Najczęściej stosuje się częstotliwości radiowe w zakresie od 16 MHz do 1 GHz. Dla protonów obecnych w izotopie ¹H umieszczonych w polu magnetycznym B = 1 T radioimpuls ma częstotliwość ok. 40 MHz.

Najczęstsze radioimpulsy to π / 2 i π. Obracają one magnetyzację o kąty odpowiednio 90 i 180° w stosunku do osi Z. Radioimpuls 90° zamienia populacje w koherencje, ponieważ spiny znajdują się w płaszczyźnie XY. Radioimpuls 180° odwraca stosunek obsadzeń populacji, a spiny i magnetyzacja skierowane są w kierunku "-Z".

Magnes 600 MHz spektrometru NMR
Magnes 600 MHz spektrometru NMR

Cewka nadawczo-odbiorcza spektroskopu umożliwia rejestrację tzw. sygnału zaniku swobodnej precesji (ang. Free Induction Decay, FID), który niesie w sobie informację przede wszystkim o różnych częstościach precesji Larmora, które to uzyskuje się wprost z transformaty Fouriera sygnału zaniku swobodnej precesji.

Widmo sygnału FID niesie również informację o oddziaływaniach spinowych oraz o procesach relaksacji (pośrednio o dynamice molekularnej). Oddziaływania spinowe to przede wszystkim oddziaływania spinów jądrowych z dodatkowym polem magnetycznym, zmieniającym warunki rezonansowe w poszczególnych obszarach próbki. Dodatkowe pole, tzw. pole lokalne, wytworzone jest przez obsadzone orbitale elektronowe (przesunięcie chemiczne) oraz na skutek oddziaływań spinów z otoczeniem, którymi są sąsiadujące spiny. Stąd też duże znaczenie NMR w chemii. Do najważniejszych oddziaływań spinowych zaliczamy: pośrednie oddziaływanie spinów jądrowych poprzez wiązanie chemiczne (polaryzacja spinów elektronowych) tzw. oddziaływanie skalarne, oddziaływanie bezpośrednie oddziaływanie spin-spin i kilka innych, znacznie słabszych oddziaływań.

Sygnał FID (zaniku swobodnej precesji) zanika głównie na skutek procesów relaksacyjnych. Podstawowe procesy relaksacji to tzw. relaksacja typu spin-spin (relaksacja poprzeczna ze stałą czasową T2) oraz relaksacja typu spin-sieć (relaksacja podłużna ze stałą czasową T1). Za zanik magnetyzacji ze stałą czasową T2 odpowiadają w głównej mierze niejednorodności pola magnetycznego, procesy transportu oraz procesy wymiany chemicznej. Relaksacja T1 to powrót układu spinów do równowagi termodynamicznej, opisanej statystyką Boltzmanna.

Dzięki obrazowaniu MRI (ang. magnetic resonance imaging), NMR jest dzisiaj podstawową metodą diagnostyczną. Podstawą obrazowania jest wykorzystanie tzw. gradientów pola magnetycznego, które różnicują pole \vec B_z wewnątrz obrazowanego obiektu. Zróżnicowanie pola i radioimpulsy o odpowiednio dobranym widmie, pozwalają na spełnienie selektywnych warunków rezonansowych i rejestrację sygnału z wybranych fragmentów obiektu.

[edytuj] Przesunięcie chemiczne

W przypadku substancji składającej się wyłącznie z jednego rodzaju atomów – np. gazowego wodoru, generowane w warunkach eksperymentu NMR widmo promieniowania elektromagnetycznego składa się zazwyczaj z jednej ostrej linii, bo wszystkie jądra są jednakowe i znajdują się w tym samym polu magnetycznym.

W przypadku substancji składającej się z bardziej złożonych cząsteczek np. etanolu, różne atomy wodoru obecne w tej cząsteczce będą wysyłały promieniowanie elektromagnetyczne o nieco innej częstotliwości. Wynika to z efektu ekranowego elektronów znajdujących się wokół tych jąder. Elektrony są również w stałym ruchu i także są obdarzone ładunkiem elektrycznym, dlatego ich ruch generuje pole magnetyczne, o innej biegunowości niż zewnętrzne pole magnetyczne generowane przez aparat NMR.

W rezultacie jądra atomów znajdują się faktycznie w nieco innym polu, niż to generowane przez aparat NMR. Polu będącego wypadkową pola aparatu i pola generowanego przez elektrony. To wypadkowe pole jest różne dla każdego z jąder atomów tworzących daną cząsteczkę, bo wokół każdego z nich jest inny zbiór elektronów, wynikający z układu wiązań chemicznych. Powoduje to, że ten sam rodzaj jąder (np. wodoru), ale umieszczonych w innych miejscach cząsteczki, generuje w warunkach NMR promieniowanie elektromagnetyczne o nieco innej częstotliwości, i w rezultacie w widmie otrzymuje się zbiór ostrych sygnałów, których liczba odpowiada liczbie różnych chemicznie atomów występujących w danej cząsteczce. Jądra magnetyczne w cząsteczce absorbujące promieniowanie o tej samej częstotliwości nazywane są jądrami równocennymi chemicznie.

Położenie sygnału w widmie NMR jest określane za pomocą tzw. przesunięcia chemicznego. Przesunięcie chemiczne δ jest podzieloną przez częstotliwość nośną spektrometru NMR νNMR i pomnożoną przez czynnik 106 różnicą między częstotliwością absorpcji danego typu jąder chemicznych w substancji badanej νX(s), a częstotliwością absorpcji tych jąder w substancji wzorcowej νX(w):

 \delta = {{\nu_{X{\rm (s)}} - \nu_{X{\rm (w)}}} \over {\nu_{\rm NMR}}} \cdot 10^6

Przesunięcia chemiczne w NMR wyraża się w jednostkach ppm (parts per million – część na milion).

Zakresy wartości przesunięć chemicznych odpowiadające absorpcji przez jądra znajdujące się w otoczeniu określonych grup chemicznych są stablicowane. Porównanie zarejestrowanych przesunięć chemicznych z wartościami tablicowymi umożliwia identyfikację struktury chemicznej badanego związku.

Substancja wzorcowa w spektroskopii NMR powinna być niereaktywna, tania, powinna absorbować promieniowanie elektromagnetyczne w zakresie, w którym nie absorbują go substancje badane i dobrze rozpuszczać się w rozpuszczalnikach stosowanych do pomiarów. Substancją wzorcową w przypadku spektroskopii ¹H NMR i 13C NMR jest tetrametylosilan Si(CH3)4 (TMS).

Protonowe widma NMR (¹H NMR) zapisuje się w tzw. skali δ, której zerem jest absorpcja protonów tetrametylosilanu, przy czym widma rysuje się tak, że przesunięcia chemiczne zmniejszają się od lewej do prawej strony widma (duże wartości δ są po lewej stronie widma, a zero po prawej). Patrząc od lewej do prawej strony widma rośnie ekranowanie jąder magnetycznych (im bardziej w prawo, tym jądra te są silniej "przesłaniane" przez elektrony). Dawniej stosowano również inną skalę, tzw. skalę τ, której wartości (również wyrażane w ppm) rosły od lewej do prawej strony widma, a protony TMS w tej starej skali absorbowały przy 10 ppm:

τ = 10 − δ

Obecnie skala τ praktycznie nie jest już stosowana, można ją jednak spotkać w większości prac z lat 60. XX wieku.

[edytuj] Stałe sprzężeń

Przesłanianie jąder magnetycznych przez elektrony nie jest jedynym czynnikiem wpływającym na kształt widma NMR. Drugim bardzo istotnym czynnikiem są oddziaływania między sąsiadującymi jądrami, tzw. sprzężenia spinowo-spinowe. Charakteryzowane są one tzw. stałymi sprzężeń J (wyrażane w Hz). Podając stałą sprzężeń podaje się zwykle ilość wiązań oddzielających sprzęgające się jądra oraz rodzaj jąder. I tak na przykład zapis ³JCC oznacza stałą sprzężenia przez trzy wiązania między dwoma jądrami węgla (izotop 13C).

W wyniku oddziaływania spinowo-spinowego pojedyncze sygnały NMR odpowiadające jądrom równocennym chemicznie ulegają rozszczepieniu na multiplety. W widmach protonowych, gdy różnice między przesunięciami chemicznymi sprzęgających się sygnałów są duże w porównaniu ze stałymi sprzężeń, wielkość stałej sprzężenia daje się łatwo odczytać z odległości między sygnałami w multiplecie. Dodatkowo ilość sygnałów multipletu umożliwia stwierdzenie z iloma jądrami sprzęga się dane jądro magnetyczne. Są to tzw. proste układy spinowe.

Jeżeli jednak odległość między sygnałami jest porównywalna ze stałą sprzężeń problemem może okazać się wyznaczenie nie tylko stałych sprzężeń, ale również i samych przesunięć chemicznych (tzw. widma silnie sprzężone). Do przypisywania sygnałów w takich widmach stosuje się wiele złożonych technik NMR, czasem w połączeniu z obliczeniami chemii kwantowej.

Stałe sprzężeń można korelować z budową przestrzenną cząsteczki (np.: korelacja stałych sprzężeń między protonami przez trzy wiązania ³JHH i kątów dwuściennych – tzw. zależność Karplusa).

W protonowym NMR stałe sprzężeń ²JHH nazywa się stałymi geminalnymi (protony przy tym samym atomie węgla, od gemini – bliźniacy), a ³JHH stałymi wicynalnymi.

Ciekawym, a stosunkowo słabo poznanym zjawiskiem są tzw. sprzężenia przez przestrzeń. Zwykle uważa się, że sprzężenia spinowo-spinowe w NMR są przenoszone przez układ wiązań, a sprzężenia przez 4 wiązania są już ledwo wykrywalne. W niektórych jednak cząsteczkach ilość wiązań między dwoma sprzęgającymi się jądrami magnetycznymi jest bardzo duża, a mimo to obserwuje się wyraźne sprzężenia. Zwykle dzieje się tak, jeśli odległość w przestrzeni między sprzęgającymi się jądrami jest niewielka. Takie sprzężenia muszą być więc przenoszone przez przestrzeń.

[edytuj] Rodzaje widm NMR

  • Widma jednowymiarowe w fazie ciekłej – analizowana próbka musi być ciekła (sama substancja może być ciekła lub stała, ale do analizy należy ją rozpuścić w rozpuszczalniku deuterowanym, tj. takim, w którym wszystkie lub możliwie wiele protonów zostało zastąpionych deuteronem). Zabieg ten wykonuje się z dwóch powodów. Pierwszy, to konieczność rozcieńczenia protonów przy wykonywaniu widm ¹H. Drugi, to wykorzystanie sygnału deuteru (deuteron też jest jądrem magnetycznie czynnym) do stabilizacji częstotliwości podstawowej spektrometru NMR.

Najczęściej rejestruje się widma wodoru ¹H, węgla 13C i fosforu 31P.

  • Widma w fazie ciekłej, wielowymiarowe – analizowana substancja musi być rozpuszczona w rozpuszczalniku deuterowanym. Rejestruje się jednocześnie widma pochodzące od dwóch lub więcej rodzajów atomów, co umożliwia obserwację interferencji i sprzężeń między widmami generowanymi przez różne atomy w cząsteczce. Poza tym dosyć często stosuje się widma korelacyjne uwzględniające jądrowy efekt Overhausera co pozwala na określanie z dosyć dobrą skutecznością faktycznych odległości przestrzennych pomiędzy oddziaływających ze sobą w ten sposób jądrami . Widma tego typu są szczególnie przydatne w ustalaniu przestrzennej struktury cząsteczek o złożonej budowie.
  • Widma w fazie stałej – analizowana substancja jest ciałem stałym – umożliwia ona np. obserwację sposobu uporządkowania kryształów. Ze względu na to, że w ciele stałym praktycznie każdy atom jest w nieco innym otoczeniu chemicznym jest to technika trudna, wymagająca m. in. stosowania "tricków" z wycinaniem szumu z widm.

Podstawową techniką rejestracji widm w fazie stałej jest technika CP-MAS (ang. Cross Polarization Magic Angle Spinning). W technice tej wykorzystuje się zjawisko cross-polaryzacji, czyli "przeniesienia" polaryzacji z jądra protonu (bardzo czuły) na mniej czułe jądra, np.: 13C, 14N, 29Si. Wykorzystanie tego zjawiska podnosi w znacznym stopniu czułość pomiaru. Aby otrzymane widma miały dobrą rozdzielczość, wykorzystuje się wirowanie próbki pod kątem 54°44,1', tzw. kątem magicznym (ang. magic angle) (w stosunku do pola magnetycznego B0). Sproszkowana, krystaliczna, amorficzna próbka jest ustawiona pod "magicznym kątem" do pola magnetycznego i obracana z szybkością ponad 5 kHz.

Spektroskopia ¹H NMR stanu stałego jest metodą trudniejszą niż 13C z powodu większej ilości izotopów wodoru, które dają więcej oddziaływań wzajemnych: protonowych, homojądrowych i dipolarnych. Problem ten również został rozwiązany poprzez metodę zwaną CRAMPS (Combined Rotational and Multiple Pulse Microscopy). Podobne rezultaty uzyskano poprzez redukcję liczby protonów w wyniku podstawienia deuterem. Jest to tak zwane spinowe rozcieńczenie deuterowe (Deuterium Spin Dilution), które jest często łączone z metodą "Magic Angle Spinning".

Obecnie możliwe są pomiary przy prędkości wirowania próbki do 35 kHz. Otrzymane w ten sposób widma fazy stałej są już bardzo podobne do widm uzyskanych w fazie ciekłej.

Przykład widma ¹H NMR, wykonanego z użyciem aparatu Bruker DRX500, w CBMiM PAN, w cieczy
(Trietoksy-1-oktylosilan zanieczyszczony toluenem i izomerami oktenu)

Przykład widma 1-H NMR

[edytuj] Zobacz też

Skróty literowe w technikach NMR

Commons


[edytuj] Linki zewnętrzne

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Sub-domains

CDRoms - Magnatune - Librivox - Liber Liber - Encyclopaedia Britannica - Project Gutenberg - Wikipedia 2008 - Wikipedia 2007 - Wikipedia 2006 -

Other Domains

https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformtivo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com