See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Geometria solida - Wikipedia

Geometria solida

Da Wikipedia, l'enciclopedia libera.

Viene chiamata geometria solida quella branca della geometria che si interessa dei solidi, ovvero delle figure geometriche formate da punti tutti compresi in uno spazio R3.

Tale spazio, che è detto volumetrico, è caratterizzato da tre diverse dimensioni, ovvero dall'incrocio di tre assi tra loro perpendicolari: l'asse x , l'asse y e l'asse z ; è proprio la presenza di quest'ultimo asse che lo differenzia dallo spazio planare, provvisto di sole due dimensioni e generalmente detto cartesiano. Il punto in cui i suddetti tre assi si incrociano è chiamato origine, e viene indicato con una O maiuscola. Dei tre assi, l' x è la larghezza, l' y l'altezza e lo z la profondità.

[modifica] I solidi

I solidi, che come già detto sono le figure di cui la geometria solida si occupa, posseggono diversi elementi che le figure piane non hanno:

Elementi di geometria solida.
Elementi di geometria solida.

Il volume è tutto lo spazio interno alla figura solida. Esso, differentemente dall'area, si articola in tre dimensioni.

La faccia è, per quanto riguarda un poliedro, ciascuna delle forme geometriche o poligoni che ne delimitano il volume. Le aree di tutte le facce del poliedro, se sommate, danno l'area superficiale del solido.

Lo spigolo è il segmento d'intersezione tra due facce poligonali.

Il vertice è in geometria quel punto in cui almeno tre facce di un poliedro convergono. Esso è dunque formato dall'intersezione di tre o più diversi spigoli.

L'angolo diedro è, come si intuisce dal nome, l'angolo tridimensionale formato da due facce e dallo spigolo compreso tra esse.

I poliedri sono divisibili in poliedri irregolari, prismi e piramidi. Mentre le varie componenti dei primi sembrano non seguire alcuna particolare regola di composizione, i secondi sono sempre formati da due figure piane che fanno da basi (regolari o irregolari, ma in ogni caso tra loro uguali) e un numero di parallelogrammi pari al numero di lati delle figure di base. Le piramidi, invece, sono formate da una figura piana che fa da base (come prima, regolare o irregolare) e da un numero di triangoli pari al numero dei lati della base; tutti i suddetti triangoli hanno un vertice in comune.

[modifica] I solidi di rotazione

Oltre che ai poliedri, la geometria solida si interessa anche ai cosiddetti solidi di rotazione, ovvero a quelle figure geometriche tridimensionali provviste di almeno una faccia curva. Questi solidi sono chiamati "di rotazione" perché derivano dalla rotazione di diverse figure geometriche piane, come parabole, cerchi, rettangoli, triangoli ed altre ancora. Tra i solidi di rotazione più importanti ricordiamo la sfera (dal cerchio), il cilindro (dal rettangolo o dal quadrato) ed il cono (dal triangolo).


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -