פונקציה קעורה
מתוך ויקיפדיה, האנציקלופדיה החופשית
במתמטיקה, פונקציה קעורה בקטע מסוים הינה פונקציה אשר עבור כל שתי נקודות באותו הקטע, הישר המחבר בין שתי הנקודות נמצא מתחת לגרף הפונקציה.
[עריכה] הגדרה
- הגדרה: תהא פונקציה המוגדרת בקטע . הפונקציה תקרא קעורה בקטע אם עבור כל וכל מתקיים אי השוויון .
- הגדרה שקולה: היא קעורה אם היא קמורה.
אם הפונקציה גזירה פעמיים בקטע, ניתן לזהות קעירות באמצעות הנגזרת השנייה שלה - אם הנגזרת השנייה אי חיובית בכל הקטע, הפונקציה קעורה בו.
[עריכה] פונקציות לינאריות
פונקציה לינארית נחשבת קעורה וקמורה בעת ובעונה אחת, בגלל אי־השוויון החלש ( ו־). פיתוח של הגדרת הקמירות או הקעירות, כאשר הפונקציה המדוברת היא לינארית, מוביל לשוויון ממש בין שני האגפים.
[עריכה] ראו גם
חשבון אינפיניטסימלי | |
---|---|
מושגי יסוד: |
חשבון אינפיניטסימלי | סדרה | גבול | סדרת קושי | טור | אינפיניטסימל | שדה המספרים הממשיים | ערך מוחלט | אי-שוויון המשולש | אי-שוויון קושי-שוורץ |
פונקציות: |
פונקציה | גרף פונקציה | פונקציה לינארית | פונקציה מונוטונית | נקודת קיצון | פונקציה קעורה | פונקציה קמורה | פונקציה רציפה | רציפות במידה שווה | נקודת אי רציפות | נגזרת | טור טיילור | סדרת פונקציות | התכנסות במידה שווה |
משפטים: |
משפט בולצאנו-ויירשטראס | משפטי ויירשטראס | משפט קנטור | משפט ערך הביניים |משפט פרמה | משפט רול | משפט הערך הממוצע של לגראנז' | משפט הערך הממוצע של קושי | משפט דארבו | כלל השרשרת | כלל הסנדוויץ' | כלל לופיטל | משפט שטולץ | אריתמטיקה של גבולות |
האינטגרל: |
אינטגרל | אינטגרל לא אמיתי | המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי | אינטגרציה בחלקים | שיטות אינטגרציה |
אנליזה מתקדמת: |
פונקציה מרוכבת | אנליזה וקטורית | שיטת ניוטון-רפסון | משוואה דיפרנציאלית | טופולוגיה | תורת המידה |
אנליזה מתמטית - אנליזה וקטורית - טופולוגיה - אנליזה מרוכבת - אנליזה פונקציונלית - תורת המידה |