מערכות מספרים
מתוך ויקיפדיה, האנציקלופדיה החופשית
במתמטיקה, מערכת מספרים היא קבוצה של מספרים, או עצמים הדומים למספרים, שמוגדרות בה פעולות אריתמטיות כגון חיבור וכפל. המערכות החשובות ביותר הן קבוצת המספרים הטבעיים, חוג המספרים השלמים, שדה המספרים הרציונליים, שדה המספרים הממשיים ושדה המספרים המרוכבים. עם זאת לשאלה 'מהי מערכת מספרים' אין תשובה מדויקת, וקבוצות כלליות יותר עשויות להחשב למערכות מספרים בהקשר המתאים.
סביר להניח שבתחילה רק מספרים טבעיים נחשבו כ'מספרים'. אלו הם מונים של קבוצות סופיות: אחד, שניים, שלושה, ארבעה וכן הלאה. בבית הספר של פיתגורס 'מספר' היה תמיד יחס בין שני מספרים שלמים, כלומר (בשפה המודרנית) מספר רציונלי. מצד שני הפיתגוראים זיהו מספר עם האורך של קטע מתאים, והעדיפו בזה את הגישה הגאומטרית לשאלה 'מהו מספר'. הצורך של הפיתגוראים בהתאמה בין שתי ההגדרות האלה היה חזק כל-כך, עד שלפי האגדה הם זרקו לנהר תלמיד שגילה כי אורך האלכסון של ריבוע שצלעו יחידה אחת (שורש 2 על-פי משפט פיתגורס) אינו מספר רציונלי. עד למאה ה-16 מספר היה צריך להיות בעל משמעות גאומטרית: אורך, שטח או נפח; אפילו בפתרונות הראשונים למשוואה ממעלה שלישית ורביעית התייחסו בנפרד למקרים שבהם צריך להשוות 'נפח ועוד שטח' (כלומר ) למספר קבוע, לעומת השוואת נפח ל'שטח ועוד קבוע'. ההתקדמות ביכולת לפתור משוואות אלו הביאה להכרה בצורך במספרים כלליים יותר, החל במספרים שליליים, וכלה במספרים המרוכבים.
תוכן עניינים |
[עריכה] המספרים הטבעיים
הפיתוח האקסיומטי, המסודר, של מערכות מספרים החל בנסיונות של פאנו, בסביבות 1880, לבנות מערכת של אקסיומות שתתפוס בדייקנות את מה שאנחנו מצפים מקבוצת המספרים הטבעיים. אקסיומות אלה נוסחו כמה שמאוחר יותר ייקרא בלוגיקה מתמטית שפה מסדר ראשון. הרעיון הבסיסי של פאנו היה שכדי לתאר את המספרים הטבעיים מספיק להניח שקיים איבר קטן ביותר (האפס), ושלכל איבר יש עוקב (העוקב של 7 הוא 8, וכן הלאה). מהנחות אלה, יחד עם אקסיומת האינדוקציה, הוא פיתח את מערכת פאנו של המספרים הטבעיים.
האינדוקציה מאפשרת להגדיר את פעולת החיבור: אם נסמן ב- את העוקב של , אז הוספת אחד מוגדרת לפי , בעוד שהוספת כל מספר גדול יותר מוגדרת כעוקב של פעולת חיבור שכבר הוגדרה: . באופן דומה אפשר להגדיר גם את הכפל: , ואילו . פאנו הראה שפעולות אלה מקיימות את כל התכונות המוכרות: קומוטטיביות, אסוציאטיביות, ודיסטריבוטיביות זו ביחס לזו. עוד תכונה יסודית המשולבת במערכת של פאנו: ישנו יחס סדר המאפשר להשוות שני מספרים טבעיים ולקבוע מי מהם גדול יותר. יחס הסדר הזה הוא יחס סדר לינארי.
מאוחר יותר, במסגרת הכללית יותר של תורת הקבוצות האקסיומטית, ביקשו הלוגיקאים לבסס את המספרים הטבעיים על המושג היסודי של קבוצה. גוטלוב פרגה בנה מודל לאקסיומות של פאנו באמצעות שימוש בקבוצות. הוא הציע לבחור את הקבוצה הריקה כאיבר האפס, ולהגדיר את המספרים הבאים באינדוקציה: , כאשר היא פעולת האיחוד של קבוצות. מהגדרה זו יוצא שהמספר אחד הוא הקבוצה שיש לה איבר יחיד, אפס; שתיים היא הקבוצה שיש לה שני איברים, אפס ואחד, ובאופן כללי המספר n הוא הקבוצה שיש בה בדיוק n איברים: . מודל זה ניתן לניסוח במסגרת השפה של תורת הקבוצות (עם אקסיומות צרמלו פרנקל).
את מערכת המספרים הטבעיים מקובל לסמן באות . לפעמים הכוונה היא לקבוצה הכוללת את כל המספרים מאפס ואילך, ולפעמים רק את אלו הגדולים ממש מאפס.
[עריכה] המספרים השלמים
לאחר שנבנתה המערכת של המספרים הטבעיים עם פעולות החיבור והכפל שלהם, אפשר לחשוב על מספר שלם כאילו היה הפרש של שני מספרים טבעיים. באופן פורמלי יותר, מגדירים יחס שקילות על קבוצת הזוגות הסדורים , על ידי שמזהים זוגות אם ורק אם . באופן לא פורמלי חושבים על מחלקת השקילות של הזוג , אותה מסמנים ב- , כאילו היא מייצגת את ההפרש .
כעת אפשר להגדיר את פעולות החיבור והכפל: , ו- . אפשר לבדוק שהגדרות אלו אינן תלויות בבחירת הנציגים, ושהפעולות לא איבדו את התכונות הטובות שהיו להן קודם לכן. בנוסף לזה מרוויחים תכונה חדשה: לכל מספר יש מספר כך שסכומם הוא אפס. יתרה מזו, קבוצת המספרים הטבעיים לא הלכה לאיבוד: אם מתבוננים בתת-הקבוצה של המספרים מהצורה , מתברר שהיא מקיימת את כל התכונות שהיו למספרים הטבעיים. אם כך, קבוצת המספרים השלמים מכילה 'עותק' של המספרים הטבעיים בתוכה. גם את יחס הסדר אפשר להעתיק לכאן, והוא עדיין יחס סדר לינארי.
הקבוצה שבנינו כאן היא חוג קומוטטיבי, הנקרא חוג המספרים השלמים. קבוצה זו מסמנים בדרך-כלל ב- . זוהי הדוגמה הבסיסית והפשוטה ביותר לתחום שלמות, שהוא במקרה זה חוג אוקלידי.
[עריכה] המספרים הרציונליים
החסרון הבולט של המספרים השלמים הוא בכך שלא ניתן לחלק בהם. אין מספר שלם שאם נכפיל אותו בשלוש יתן שבע. כדי לפתור את הבעיה, מגדירים מערכת מספרים גדולה יותר, שתכלול את כל המספרים השלמים, וגם את המנות שלהם.
בניית המספרים הרציונליים דומה לזו שהניבה את השלב הקודם בסולם, המספרים השלמים. אנו מתבוננים באוסף הזוגות , כלומר, כל הזוגות הסדורים של מספרים שלמים שבהם הרכיב השני אינו אפס, ומגדירים עליו יחס שקילות לפי התנאי אם ורק אם . שוב אפשר לחשוב על הזוג כאילו הוא מייצג את המנה , אלא שפורמלית איננו יכולים לדבר על שברים משום שעדיין לא בנינו אותם. פעולות החיבור והכפל בין מחלקות השקילות החדשות מוגדרות על-פי הפעולות במספרים השלמים: ו- . שוב יש לבדוק שההגדרות אינן תלויות בבחירת הנציגים, ושהפעולות החדשות מקיימות את אותן תכונות שהתקיימו במערכת הקודמת. את יחס הסדר אפשר להגדיר כך: אם . היחס עדיין לינארי (כלומר: אם שני איברים שונים זה מזה, אז אחד מהם גדול מן השני), וכעת הוא גם צפוף.
גם בבנייה הזו אנחנו מרוויחים תכונה חדשה: לכל מספר שאינו אפס, יש מספר הופכי ביחס לכפל. קבוצה בעלת כל התכונות האלה נקראת שדה סדור. לשדה הסדור שלנו קוראים שדה המספרים הרציונליים, ואיבריו הם מספרים רציונליים.
המספרים השלמים עדיין איתנו: אלו הם המספרים מהצורה . אפשר לחבר ולהכפיל אותם כמספרים שלמים (באמצעות הפעולות שהוגדרו ב- ) או כמספרים רציונליים, ומתקבלת אותה תוצאה.
[עריכה] מספרים אלגבריים
במערכת המספרים הרציונליים אפשר לחלק, אבל יש לה שני חסרונות בולטים אחרים:
- המספרים הרציונליים אינם כוללים שורשים, כגון (ראו הוכחה ששורש שתיים אינו רציונלי), וגם אין בהם שורשים למשוואות מסובכות יותר, כמו .
- שדה המספרים הרציונליים אינו שלם, כלומר, יש בו קבוצות חסומות שאין להן חסם עליון (משמעותו של חיסרון זה תובהר בסעיף הבא).
את הבעיה הראשונה אפשר לפתור עבור כל פולינום ופולינום באופן פרטני, על ידי יצירת הרחבות מתאימות של שדה הרציונליים (שדות אלו נקראים שדות מספרים). מכל ההרחבות האלה יחד אפשר לבנות את הסגור האלגברי של שדה הרציונליים (הנקרא שדה המספרים האלגבריים), שבו יש שורש לכל פולינום.
גישה זו של פתרון משוואות פולינומיות אינה מתגברת על חוסר השלמות שציינו קודם לכן. בנוסף לזה, מכיוון שעדיין לא בנינו שדה גדול יותר, לא ברור איך לחבר איברים של הרחבות שונות זה עם זה, ולכן הבנייה של הסגור האלגברי די מסובכת. מתברר שגישה אחרת, המתמודדת רק עם החסרון השני, פותרת בדרך אגב גם את הבעיה הראשונה, ולכן בפיתוח מסודר של מערכות המספרים לא רואים צורך לעצור בדרך לשם בנייה של שדה המספרים האלגבריים.
[עריכה] מספרים ממשיים
כפי שציינו, שדה המספרים הרציונליים אינו שלם, והדבר מכביד מאוד על פיתוח מסודר של האנליזה. המעבר לשדה שלם הוא מסובך יותר מן השלבים הקודמים, ולזה יש סיבה עקרונית. כל המערכות שראינו עד כאן: הטבעיים, השלמים, הרציונליים ואפילו המספרים האלגבריים, הן בנות מנייה. בבניית השדה השלם, שדה המספרים הממשיים, אנחנו צריכים לייצר קבוצה בעלת עוצמה גדולה יותר, במקרה הזה עוצמת הרצף.
את אי-השלמות של המספרים הרציונליים אפשר לנסח בשתי דרכים:
- ישנן קבוצות חסומות שאין להן חסם עליון, דהיינו חסם מלעיל מינימלי; לדוגמה, קבוצת המספרים הקטנים מארבע בעלי סינוס חיובי היא כמובן קבוצה חסומה. כל מספר (רציונלי!) גדול מפאי, גדול מכל האיברים בקבוצה זו והוא לכן חסם מלעיל. אבל פאי אינו מספר רציונלי, ולכן בקבוצת המספרים הרציונליים הגדולים מפאי אין איבר קטן ביותר.
- ישנן סדרות קושי שאינן מתכנסות. בדרך כלל מפתחים את המושגים 'סדרת קושי' ו'סדרה מתכנסת' אחרי שנבנה השדה הממשי, ולכן חשוב להדגיש כאן שאפשר להגדיר מושגים אלה כבר אחרי שבנינו את השדה הרציונלי (לצפיפות והארכימדיות יש כאן תפקיד חשוב).
כנגד שתי המגבלות האלה של שדה הרציונליים, הוצעו ב-1872 שתי גישות לבניית שדה המספרים הממשיים. ריכארד דדקינד הציע בנייה המבוססת על חתכי דדקינד, שהם קבוצות A של מספרים רציונליים (בשלב זה - אלו המספרים העומדים לרשותנו) המקיימות ארבע דרישות:
- הקבוצה A אינה ריקה.
- הקבוצה A אינה כוללת את כל הרציונליים.
- כל איבר ב- A קטן מכל איבר שאינו ב- A.
- אין ל- A איבר מקסימלי.
קבוצה בעלת תכונות אלה נקראת כאמור 'חתך דדקינד', וחתכים אלו הם המספרים הממשיים. דדקינד הראה איך להגדיר חיבור וכפל על קבוצות אלה, באופן שיכבד את כל התכונות הקודמות. את יחס הסדר מגדירים בעזרת ההכלה (מספר קטן יותר מוכל במספר גדול ממנו). אפשר לזהות את המספר הרציונלי עם הקבוצה , וכך - פעם נוספת - הקבוצה החדשה מכילה עותק של הקבוצה הקודמת שבנינו.
את קבוצת החתכים מסמנים באות . זהו שדה סדור שלם מינימלי: הוא מוכל בכל שדה סדור שלם אחר. מכיוון שכך, שדה המספרים הממשיים הוא השדה הסדור השלם המינימלי היחיד (אם יש שניים כאלה, הם מוכלים זה בזה ולכן שווים).
באותה שנה הציע גאורג קנטור שיטה אחרת להשגת אותה מטרה. אצל קנטור 'מספר ממשי' הוא מחלקת שקילות של סדרות קושי של מספרים רציונליים, כאשר שתי סדרות קושי שקולות זו לזו אם סדרת ההפרשים מתכנסת לאפס. החיבור והכפל מוגדרים על-פי רכיבים. גם כאן התוצאה היא שדה סדור שלם מינימלי, ומכאן שקנטור ודדקינד בנו (בתחפושות שונות) את אותה המערכת.
[עריכה] מספרים מרוכבים
לשדה המספרים הממשיים יש עדיין חסרון אחד קטן: אין בו שורש של מספרים שליליים. זו אינה בעיה ייחודית למספרים הממשיים - בכל שדה סדור (שדה שיש בו סדר, ולכן מספרים חיוביים ושליליים) המכפלה של חיובי בחיובי היא חיובית, וגם המכפלה של שלילי בשלילי היא חיובית, ומכאן שאין מספר שריבועו שלילי. אם רוצים שורשים למספרים שליליים, מוכרחים לוותר על יחס הסדר.
שדה כזה אפשר לקבל על ידי הגדרת פעולות חיבור וכפל על זוגות סדורים של מספרים ממשיים: ו- . הקבוצה הופכת תחת פעולות אלה לשדה סגור אלגברית שהוא גם מרחב מטרי שלם. שדה זה, אותו מסמנים ב-, נקרא שדה המספרים המרוכבים, והוא המצע לכל הפעילות באנליזה. בתור אוסף של זוגות סדורים, הוא מרחב וקטורי מעל השדה הממשי, וממדו 2.
[עריכה] מעבר למרוכבים
אמנם, אי אפשר לצפות למערכת מספרים 'מוצלחת' יותר משדה המספרים המרוכבים, אבל עדיין אפשר לתהות אילו מערכות גדולות יותר אפשר לבנות. המבנה הטיפוסי כאן צריך להיות מרחב וקטורי מעל , שאפשר להגדיר בו פעולת כפל מוצלחת. מערכות כאלה אכן קיימות, אלא שבהיפוך מוזר של המגמה שראינו עד כה, בכל צעד של הבנייה מפסידים משהו. מעל לשדה המספרים המרוכבים בנה ויליאם רואן המילטון את אלגברת הקווטרניונים, שאינה שדה אלא אלגברה לא קומוטטיבית עם חילוק. בקווטרניונים ישנם אינסוף עותקים של שדה המספרים המרוכבים.
אלגברת הקווטרניונים היא אלגברה אסוציאטיבית. קיימת אלגברה מממד 8, אלגברת האוקטוניונים, שהיא עדיין אלגברה עם חילוק (כלומר, לכל איבר שאינו אפס קיים הפכי), אבל אינה אסוציאטיבית: זוהי אלגברה אלטרנטיבית, המכילה עותק של אלגברת הקווטרניונים.
המעברים מן הממשיים למרוכבים, מן המרוכבים לקווטרניונים ומשם לאוקטוניונים הם כולם מקרים פרטיים של הבנייה של אלגברות קיילי-דיקסון, המייצרת מאלגברה עם אינוולוציה מממד n אלגברה חדשה, מממד 2n. האלגברה של קיילי-דיקסון מממד 16 היא אלגברה לא אסוציאטיבית שאינה אפילו אלטרנטיבית.
שדות אחרים שאפשר לראות כמערכות של מספרים הן שדה המספרים ה-p-אדיים שהוא ההשלמה של השדה הרציונלי ביחס להערכה לא ארכימדית, והשדה של המספרים הסוריאליסטיים.
[עריכה] ראו גם
- מערכת פאנו
- חוג המספרים השלמים
- שדה המספרים הרציונליים
- שדה המספרים הממשיים
- שדה המספרים המרוכבים
- קווטרניונים
- אוקטוניונים
- אלגברות קיילי-דיקסון