מנוע בעירה פנימית
מתוך ויקיפדיה, האנציקלופדיה החופשית
מנוע בעירה פנימית הוא מנוע חום השורף דלק, והופך את אנרגיית החום הנוצרת בשריפה לאנרגיית לחץ, אשר מנוצלת לביצוע עבודה מכנית. הוא נקרא כך משום ששריפת הדלק והעבודה המכנית נעשות בתוך המנוע עצמו, למשל בצילינדר של מנוע בוכנאי. במנוע בעירה חיצונית, לעומת זאת, שריפת הדלק מתבצעת במכלול נפרד וחיצוני למנוע, למשל בדוד קיטור, בעוד שהעבודה המכנית נעשית בתוך המנוע עצמו, למשל בטורבינת קיטור.
על מנועי בעירה פנימית נמנים מנועי דיזל ובנזין בוכנאיים, טורבינות גז ומנועים סילוניים.
תוכן עניינים |
[עריכה] היסטוריה
מנועי הבעירה הפנימית המוקדמים ביותר היו כנראה רקטות וזיקוקים שפותחו בידי הסינים עוד במאה השלישית לפנה"ס, תוך שימוש באבק שריפה. אלו היו למעשה צעצועים עד למאה ה-11 שבה החלו לשמש ככלי נשק. פרנסואה איזק דה ריבז בנה את מנוע הבעירה הפנימית הראשון שהתבסס על בעירה לסירוגין ב-1807. עם זאת, המנוע לא היה שימושי מכיוון שהוא יצר כוח מזערי ודרש תערובת של מימן וחמצן בתור דלק.
הפטנט הראשון למנוע בעירה פנימית ניתן בארצות הברית ב-1826 לסמואל מורי. ב-1859 המציא הצרפתי ז'אן לנואר את מנוע הבעירה פנימית הראשון שהיה בעל ערך שימושי. הוא התבסס על גז פחמי שנשאב לתוך הצילינדר בתחילת כל פעימה ואז הוצת כדי לדחוף את הבוכנה לצד השני של הצילינדר. תהליך זה חזר על עצמו גם בצד השני של הצילינדר ולפיכך מנוע זה היה בעל פעולת שריפה כפולה.
ב-1867 בנה המהנדס הגרמני ניקולס אוטו את מנוע השריפה הפנימית בעל ארבע הפעימות הראשון. המנוע התגלה כיעיל יותר ממנועו של לנואר ושווק בהצלחה לצרכים תעשייתיים. תכנון מנוע זה שופר בהמשך על ידי הגרמני גוטליב דיימלר שהתמקד בהפיכת הטכנולוגיה לניתנת לשימוש במכוניות, במיוחד על ידי הוספת מאייד הבנזין. ב-1890 בנה הגרמני וילהלם מייבאך את מנוע השריפה הפנימית הארבע-צילנדרי הראשון. דיימלר ומייבאך עבדו לפני כן בחברה של אוטו אך עזבו ב-1882 כדי להקים חברה משלהם.
באותו זמן לערך הלך והשתכלל תכנונו של מנוע בעירה פנימית בעל מחזור של שתי פעימות. מנוע זה הומצא ב-1867 על ידי סר דוגאלד קלרק, ושופר על ידי ג'וזף דיי ב-1891 .
ב-1930 הוציא סר פרנק ויטל פטנט על מנוע הטורבינה שנודע לאחר מכן כמנוע הסילון. ב-1937 הופעל מנוע כזה לראשונה, וב-1939 מטוס של חברת ארנסט היינקל בשם HE178 טס בפעם הראשונה עם מנוע סילון בלבד.
[עריכה] יישומים
מנועי הבעירה הפנימית משמשים בדרך כלל כלי רכב ממונעים. הם מופיעים ברוב המכוניות, האופנועים, הסירות הממונעות, כלי הטיס וקטרי הרכבת. טיפוס מנועי הטורבינה יופיע בדרך כלל במטוסי סילון ואוניות גדולות.
מנועי הבעירה הפנימית משמשים גם בתעשייה, בעיקר ביישומים נייחים, שם הם מתחרים במנועים חשמליים. מנועים חשמליים טומנים בחובם יתרונות על פני מנועי הבעירה הפנימית, אך כיום הם עדיין רחוקים מלהחליף אותם בכלי הרכב הממונעים.
[עריכה] חלקים
חלקי מנוע בעירה פנימית משתנים בהתאם לתת טיפוס המנוע.
במנועי ארבע פעימות, שהם הטיפוס הנפוץ ביותר, החלקים החשובים הם השסתומים (באיור בצבע כחול/אדום) ואחד או יותר גלי זיזים (גם כחול/אדום). במנועי שתי פעימות יופיעו פתחי פליטת פיח ויניקת דלק ללא שסתומים. בשני סוגי המנועים הללו יש גל ארכובה (סגול) ואחד או יותר צילינדרים (אפור בהיר), ובכל אחד מהם יש מצת (אפור כהה), בוכנה (צהוב) וטלטל (חום).
תנועת בוכנה בכיוון אחד קרויה פעימה. פעימה שמתרחשת לאחר יניקת אוויר מהול בדלק שהוצת נקראת פעימת כוח.
[עריכה] פעולה
כל מנועי הבעירה הפנימית תלויים בתהליך הבעירה שבו דלק כלשהו, בדרך כלל בשילוב עם אוויר אך לא רק, יוצר ריאקציה כימית שמספקת אנרגיה שמתורגמת לכוח ההנעה.
הדלקים הנפוצים ביותר כיום עשויים מפחמימנים ומיוצרים מנפט. בין אלו ניתן למצוא את הבנזין, הסולר והגז הטבעי. יש המשערים שבעתיד, המימן עשוי להחליף את סוגי הדלק האלו. היתרון של מימן הוא שהבעירה שלו מפיקה מים בלבד, זאת בניגוד לדלק המקובל שהבעירה שלו מפיקה גם פחמן דו-חמצני – חומר שידוע כגורם להתחממות הגלובלית בכדור הארץ.
בכל מנועי הבעירה הפנימית, ללא תלות בסוג הדלק, נדרשים אמצעים להציתו כדי לגרום לבעירה. רוב המנועים עושים שימוש במצת חשמלי או בהצתה בעזרת לחץ דחיסה. מערכות הצתה חשמליות נעזרות במצבר וסליל מושרה כדי לספק מתח גבוה שמצית את תערובת הדלק אוויר בחלל הצילינדר. המצבר נטען מחדש תוך כדי פעולת המנוע בעזרת מחולל זרם חילופין (אלטרנטור) שמופעל בכוח המנוע. מערכות הצתה בעזרת לחץ דחיסה עושות שימוש בחום שכבר נמצא ממילא בתא השריפה כדי להצית את הדלק המוזרק.
לאחר ההצתה, תוצרי הבעירה אוצרים בתוכם יותר אנרגיה זמינה משהייתה בתערובת האוויר דלק הדחוסה (שהייתה בעלת אנרגיה כימית גבוהה יותר). אנרגיה זו באה לידי ביטוי בטמפרטורה ובלחץ גבוהים שמתורגמים לעבודה על ידי המנוע. במנועי בוכנה למשל, הבעירה יוצרת גזים בלחץ גבוה בחלל הצילינדר והם דוחפים את הבוכנה. לאחר שהאנרגיה נוצלה, הגזים החמים הנותרים מוצאים החוצה דרך שסתום או פתח הפליטה והבוכנה חוזרת למצבה ההתחלתי, המכונה נקודה מתה עליונה (נמ"ת). הבוכנה ממשיכה משם לשלב הבא (המשתנה מטיפוס מנוע אחד לשני). כל תוצר של חום שלא תורגם לעבודה, הוא למעשה תוצר מבוזבז, והוא מטופל בעזרת מערכת קירור (מבוססת מים, אוויר ובשיטות אחרות).
[עריכה] סיווג
יש סוגים רבים של מנועי בעירה פנימית, המתאימים לסוגי יישומים שונים. בדומה, יש גם דרכים רבות לסווג את מנועי הבעירה הפנימית, שחלקם מופיעים להלן:
[עריכה] מחזורי המנוע
|
|
---|
מנועים המבוססים על מחזור שתי פעימות מפיקים שתי פעימות לכל פעימת כוח, ונמצאים בשימוש בקטנועים, מכסחות דשא, סירות קטנות ובמעט אופנועים. מנועים אלו בדרך כלל רועשים יותר ובעלי נפח קטן. מנועים מבוססי מחזור ארבע פעימות (המכונה גם מחזור "אוטו") מפיקים ארבע פעימות לכל פעימת כוח, ונמצאים בשימוש במכוניות, אופנועים, סירות גדולות וכלי טיס. הם בדרך כלל שקטים יותר ובעלי נפח גדול בהשוואה למנועי שתי הפעימות.
ישנן מספר וריאציות נוספות על מחזור ארבע פעימות הנמצאות בשימוש מועט יחסית. הבולטות מביניהן ידועות בשם מחזור מילר ומחזור אטקינסון. מנועי דיזל נחשבים דומים למנועי ארבע פעימות, אך בתוספת מערכות להצתה על ידי דחיסה ניתן לסווגם כמנועים בעלי מחזור פעולה שונה.
[עריכה] סוגי דלק
מנועי דיזל עושים שימוש בסולר. בהשוואה למנועי הבנזין, מנועי דיזל הם בדרך כלל כבדים, רועשים, חזקים יותר בסל"ד נמוך ויעילים יותר בצריכת הדלק. הם משמשים כלי רכב כבדים, אוניות וקטרים.
מנועי בנזין משמשים את שאר כלי הרכב, כולל מכוניות, אופנועים וקטנועים. הם עושים שימוש בבנזין ברמות זיקוק שונות.
מנועים אחרים עושים שימוש בסוגי דלק כגון מימן, גז טבעי נוזלי ותחליפי סולר המבוססים על שמנים צמחיים (ביו דיזל).
[עריכה] צילינדרים
מנועי הבעירה הפנימית יכולים להכיל כל מספר של צילינדרים כאשר מספר של אחד עד עשרים נחשב לנפוץ. הגדלה במספר הצילינדרים עוזרת להגדיל את כוח המנוע אך משמעותה מנוע גדול יותר וצריכת דלק פחות יעילה.
- רוב מנועי המכוניות הם בעלי 4 עד 8 צילינדרים, בעוד מספר מכוניות יקרות עשויות להגיע גם ל-12, ומספר מכוניות קטנות ישתמשו ב-3 בלבד.
- בעבר היו נהוגים מנועים רדיאליים במטוסים והם היו מורכבים מ-5 ועד 20 צילינדרים. שורה אחת תמיד הכילה מספר אי זוגי של צילינדרים, כך שמספר זוגי מקורו ב-2 או 4 שורות.
- מנועי אופנועים מורכבים בדרך כלל מאחד עד 4 צילינדרים, עם מספר חריגים המורכבים מ-6.
- מנועי מכשירים קטנים כגון מכסחות דשא ומסורי שרשרת מורכבים בדרך כלל מצילינדר אחד.
[עריכה] מערכת הצתה
ניתן לסווג מנועי בעירה הפנימית בהתאם למערכת ההצתה. כיום נפוצות מערכות הצתה חשמליות בעזרת מצת או מערכות הצתה בעזרת חימום על ידי דחיסה. בעבר היו נפוצות גם מערכות של להבה חיצונית או שפופרת חמה.
[עריכה] תצורת המנוע
ניתן לסווג מנועי בעירה הפנימית בהתאם לתצורתו. למשל, סידור הצילינדרים, שמשפיע על הגודל הפיזי וחלקות המנוע (שמשמעותה פחות רעידות בזמן עבודת המנוע). סידורים נפוצים הם סידור בשורה, סידור בתצורת V, או סידור שטוח המכונה בוקסר. מנועי מטוסים יכולים להיות מסודרים בתצורה מעגלית (רדיאלית). סידורים אחרים פחות נפוצים הם סידורים בצורת W, X ו-H.
תצורת מנוע נדירה יחסית היא כזו שבה יש יותר מגל ארכובה אחד, והצילינדר הוא בעל שני פתחים לשתי בוכנות הנעות אחת מול השנייה ללא ראש צילינדר. תצורה זו שימשה בעבר במטוסים, קטרים ועדיין משמשת בכלי שיט.
[עריכה] נפח המנוע
נפח המנוע הוא החלל דרכו עוברות הבוכנות בפעימה אחת. הנפח נמדד בדרך כלל בסמ"ק או בליטרים. מנועים גדולים הם בדרך כלל חזקים יותר, ומספקים מומנט גבוה יותר בסל"ד נמוך יותר אך גם צורכים יותר דלק. חישוב הנפח מתבצע על ידי מכפלה של מהלך הבוכנה כפול שטחה כפול מספר הצילינדרים.
מעבר להגדלת מספר הצילינדרים, ניתן להגדיל נפח מנוע בעזרת הגדלה של מהלך הבוכנה או קוטרה. צעד כזה דורש התאמה של מערכות מנוע אחרות כדוגמת מערכת אספקת תערובת הדלק והאוויר, כדי להבטיח ביצועים אופטימליים. נפחי המנוע המוצהרים על ידי היצרנים הם לעתים קרובות מעוגלים, כך שלמשל מנוע בן 1,453 סמ"ק עשוי להיקרא 1,500.
במדינות שונות (ובעבר גם בישראל) לנפח המנוע יש השפעה על מיסוי הרכב שבו מותקן המנוע. עקב כך, בתכנון מנוע מובאים בחשבון גם שיקולי מיסוי, כך שיתאפשר שיווק מכוניות שחל עליהן מיסוי נמוך. בהתאם לכך ניתן למצוא מנוע שנפחו דווקא 1,999 סמ"ק, משום שב-2,000 סמ"ק מתחילה מדרגת מיסוי גבוהה יותר.
נפח המנוע מוגדר בנוסחה הבאה: מהלך כפול קדח. מהלך- הדרך אותה הבוכנה עוברת (מנמ"ע- נקודה מתה עליונה, הנקודה העליונה אליה מגיעה הבוכנה. עד לנמ"ת- נקודה מתה תחתונה, הנקודה התחתונה אליה מגיעה הבוכנה). קדח-השטח של הבוכנה- פאי כפול רדיוס הבוכנה בחזקה של שתים (R²). את התוצאה שהתקבלה יש להכפיל במספר הצילינדרים.
[עריכה] נתונים אחרים
- כל מנועי השריפה הפנימית נתונים בהתאם לתצורתם באופן תאורטי למגבלת יעילות עבודה עליונה. יעילות עליונה זו מושגת רק על ידי מכונת קרנו התאורטית.
- סוג נדיר יחסית של מנוע שריפה פנימית משתמש בתנועת בוכנה סיבובית במקום תנועה אורכית ובכך משיג יעילות עבודה גבוהה יחסית. מנוע זה מכונה מנוע ונקל.
[עריכה] ראו גם
[עריכה] קישורים חיצוניים
מיזמי קרן ויקימדיה |
---|
תמונות ומדיה בוויקישיתוף: מנוע בעירה פנימית |
- כיצד עובד מנוע בעירה פנימית– עם אנימציה