See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Produit vectoriel - Wikipédia

Produit vectoriel

Un article de Wikipédia, l'encyclopédie libre.

Le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension trois[1]. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs[2],[3].

Sommaire

[modifier] Histoire

[modifier] Résumé[2]

En 1843, Hamilton inventa les quaternions qui permettent de définir le produit vectoriel. Indépendamment et à la même période (1844) Grassmann définissait dans Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik un « produit géométrique » à partir de considérations géométriques ; mais il ne parvient pas à définir clairement un produit vectoriel. Puis Grassmann lit Hamilton et s'inspire de ses travaux pour publier en 1862 une deuxième version de son traité qui est nettement plus claire[4]. De même, Hamilton a lu les travaux de Grassmann et les a commentés et appréciés[5]. Plus tard Maxwell commença à utiliser la théorie des quaternions pour l'appliquer à la physique. Après Maxwell, Clifford modifia profondément le formalisme de ce qui devenait l'analyse vectorielle. Il s'intéressa aux travaux de Grassmann et Hamilton avec une nette préférence pour le premier[3]. En 1881, Gibbs publia Elements of Vector Analysis Arranged for the Use of Students of Physics s'inspirant des travaux déjà réalisés notamment ceux de Clifford et Maxwell. Si les physiciens se sont empressés d'utiliser le formalisme de Gibbs, celui-ci ne fut accepté en mathématiques que bien plus tard après plusieurs modifications.

[modifier] Anecdote

Peter Guthrie Tait dans la préface de la troisième édition de son traité sur les quaternions qualifia le nouveau formalisme créé par Gibbs de « monstre hermaphrodite, composé des notations de Hamilton et Grassmann »[6].

[modifier] Notation

Plusieurs notations sont en concurrence pour le produit vectoriel :

  • En France, le produit vectoriel de u et de v est noté u\wedgev où le V inversé se lit wedge. Cette notation a été initiée par Cesare Burali-Forti et Roberto Marcolongo en 1908[7]. Son inconvénient est de rentrer en conflit avec la notation du produit extérieur.
  • Dans la littérature anglophone (et au Canada francophone), le produit vectoriel est noté u×v. Cette notation est due à Josiah Willard Gibbs[6]. Son inconvénient est d'induire une confusion éventuelle avec le produit des réels et le produit cartésien. Mais ces produits ne portent pas sur des objets de même nature.
  • Une troisième notation est l'utilisation des crochets de Lie : \left[\vec u\, , \vec v\right][8].

Dans cet article, on utilise la première convention.

[modifier] Définition

Produit vectoriel

Soit E un espace vectoriel euclidien orienté de dimension 3. Par le choix d'une base orthonormée, E peut être identifié avec l'espace R3, mais cette identification n'est pas obligatoire pour définir le produit vectoriel.

D'un point de vue géométrique, le produit vectoriel de deux vecteurs \vec u et \vec v de E se définit comme l'unique vecteur \vec w tel que :

La notion d'orientation peut ici être comprise de manière élémentaire en utilisant la règle de la main droite : le pouce, l'index et le majeur écartés en un triède indiquent respectivement le sens de u, de v et de w. Cette définition, utilisée dans l'enseignement secondaire, n'est pas totalement satisfaisante.

[modifier] Définition par le produit mixte

Une seconde définition utilise la théorie des déterminants et la notion de produit mixte comme point de départ. Le produit mixte de trois vecteurs u,v,w, noté [u,v,w], est le déterminant de ces trois vecteurs dans une base orthonormale directe quelconque. La formule de changement de base montre que ce déterminant est indépendant du choix de la base ; géométriquement il est égal au volume orienté du parallélépipède appuyé sur les vecteurs u, v, w. Le produit vectoriel de deux vecteurs u et v est l'unique vecteur u\wedgev tel que, pour tout w, on a :

\left[\vec u, \vec v, \vec w\right] = (\vec u \wedge \vec v) \cdot \vec w\,.

L'existence et l'unicité d'un tel vecteur sont un cas particulier simple du théorème de Riesz. Le produit vectoriel s'interprète comme les variations du volume orienté d'un parallélépipède en fonction du troisième côté.

Avec une telle définition, il est possible de définir, dans un espace vectoriel orienté de dimension n + 1, le produit vectoriel de n vecteurs.


[modifier] Calcul en composantes

Le choix d'une base orthonormée directe donne une identification de E et de R3. Notons les coordonnées u=(u1,u2,u3) et v=(v1,v2,v3). Leur produit vectoriel est donné par :

u\wedge v=\begin{pmatrix}
u_2v_3-u_3v_2\\ u_3v_1-u_1v_3\\ u_1v_2-u_2v_1
\end{pmatrix}

Cette identité pourrait être prise comme une troisième définition, à condition de prouver que le vecteur obtenu est indépendant de la base orthonormale directe choisie pour le calculer.


[modifier] Propriétés

[modifier] Propriétés algébriques

Le produit vectoriel est un produit distributif, anticommutatif, non associatif :

Ces propriétés découlent immédiatement de la définition du produit vectoriel par le produit mixte et des propriétés algébriques du déterminant.

Comme crochet de Lie, le produit vectoriel satisfait l'identité de Jacobi :

  • \vec u\wedge(\vec v\wedge\vec w) + \vec w\wedge(\vec u\wedge\vec v) + \vec v\wedge(\vec w\wedge\vec u) = \vec 0

D'autre part, il satisfait aux identités de Lagrange (Egalités du Double Produit Vectoriel) :

\vec u\wedge(\vec v\wedge\vec w) = (\vec u\cdot\vec w)\vec v - (\vec u\cdot\vec v)\vec w --> Démonstration
(\vec u\wedge\vec v)\wedge\vec w = (\vec u\cdot\vec w)\vec v - (\vec v\cdot\vec w)\vec u


En partant de l'identité algébrique :

\left((bc'-b'c)^2+(ca'-c'a)^2+(ab'-a'b)^2\right) + (aa'+bb'+cc')^2 = (a^2+b^2+c^2)\cdot (a'^2+b'^2+c'^2),

on peut démontrer facilement l'égalité (aussi appelée identité de Lagrange) :

\|\vec u\wedge\vec v\|^2 + (\vec u\cdot\vec v)^2 = \|\vec u\|^2\cdot \|\vec v\|^2

que l'on peut aussi écrire sous la forme :

\left(\frac{\|\vec u\wedge\vec v\|}{\|\vec u\|\cdot \|\vec v\|}\right)^2 + \left(\frac{\vec u\cdot\vec v}{\|\vec u\|\cdot \|\vec v\|}\right)^2 = 1\,

ce qui équivaut à l'identité trigonométrique :

\sin^2(\widehat{\vec{u},\vec{v}}) + \cos^2(\widehat{\vec{u},\vec v}) = 1,

et qui n'est rien d'autre qu'une des façons d'écrire le théorème de Pythagore.

[modifier] Invariance par isométries

Le produit vectoriel est invariant par l'action des isométries vectorielles directes. Plus exactement, pour tous vecteurs u et v de E et pour toute rotation f de E, on a :

f\left[u\wedge v\right]=f(u)\wedge f(v).

Cette identité peut être prouvée différemment suivant l'approche adoptée :

Définition géométrique : L'identité est immédiate avec la première définition, car f préserve l'orthogonalité, l'orientation et les longueurs.

Produit mixte : L'isomorphisme linéaire f laisse invariant le produit mixte de trois vecteurs. En effet, le produit mixte de f(u), f(v), f(w) peut être calculé dans l'image par f de la base orthonormée directe dans la quelle le produit mixte de u, v et w est calculé. De fait, l'identité précédente s'obtient immédiatement :

(f(u)\wedge f(v))\cdot f(w)=[f(u),f(v),f(w)]=[u,v,w]=(u\wedge v)\cdot w\,.

[modifier] Définitions alternatives

[modifier] Comme produit de Lie

Toute isométrie directe de R3 est une rotation vectorielle. L'ensemble des isométries directes forme un groupe de Lie classique noté SO(3) (autrement dit, un sous-groupe fermé de GL3(R)). Son algèbre de Lie, notée so(3) est la sous-algèbre de Lie de gl3(R) définie comme l'espace tangent de SO(3) en l'identité. Un calcul direct montre qu'il est l'espace des matrices antisymétriques de taille 3. Cet espace est a fortiori stable par le crochet de Lie.

Toute matrice antisymétrique M de taille 3 s'écrit de manière unique :

M=\begin{pmatrix}
0 & a & -b\\
-a & 0 & c\\
b & -c & 0
\end{pmatrix}.

En identifiant M et le vecteur (a,b,c), on définit un isomorphisme linéaire entre so(3) et R3. Le crochet de Lie se transporte via cet isomorphisme, et R3 hérite d'une structure d'algèbre de Lie. Le crochet [u,v] de deux vecteurs est précisément le produit vectoriel de u et de v.

En effet, si u1=(a1, b1, c1), et u2=(a2, b2, c2), leur crochet se calcule en introduisant les matrices antisymétriques correspondantes M1 et M2 :

[M_1,M_2]=M_1M_2-M_2M_1=\begin{pmatrix}
0 & bc'-b'c & ac'-a'c\\
b'c -bc' & 0 & ab'-a'b\\
a'c-ac' & a'b-ab' & 0
\end{pmatrix}

Le vecteur correspondant, à savoir [u,v], a donc pour coordonnées (bc'-b'c,ca'-c'a,ab'-a'b). Cette approche redéfinit donc le produit vectoriel.

Si on suit cette approche, il est possible de prouver directement l'invariance du produit vectoriel par isométries

f\left[u\wedge v\right]=f(u)\wedge f(v).

En tant qu'algèbres de Lie, so(3) a été identifié à R3. L'action (linéaire) de SO3(R) sur R3 s'identifie à l'action par conjugaison sur so(3). SO3(R) opère donc par automorphisme d'algèbres de Lie. Autrement dit, l'identité ci-dessus est vérifiée.

[modifier] Comme produit de quaternions imaginaires

Il est possible de retrouver produit vectoriel et produit scalaire à partir du produit de deux quaternions purs. Pour rappel, le corps (non commutatif) des quaternions H est l'unique extension de R de dimension 4. Sa base canonique est (1,i,j,k) où le sous-espace engendré par i, j, k forme l'espace des quaternions purs, canoniquement identifié avec R3. Ces éléments vérifient :

i^2 = j^2 = k^2 = -1\, ;
ij=-ji=k\quad ;\quad jk=-kj=i\quad ;\quad ki=-ik=j.

Si q1=a1i+b1j+c1k et q2 = a2i+b2j+c2k, le produit q1q2 se calcule immédiatement :

q1q2 = − (a1a2 + b1b2 + c1c2) + (b1c2b2c1)i + (c1a2c2a1)j + (a1b2a2b1)k.

La partie réelle est au signe près le produit scalaire de q1 et de q2, la partie imaginaire est un quaternion pur qui correspond au produit vectoriel, après identification avec R3.

Cette coïncidence trouve ses explications dans le paramétrage du groupe SO(3) par les quaternions unitaires.


Il est de nouveau possible de justifier l'invariance par isométrie. Toute isométrie de l'espace des quaternions imaginaires s'écrit comme la conjugaison par un quaternion unitaire. Si q est un quaternion unitaire, et q1, q2 sont des quaternions imaginaires, il suffit de constater :

\left[qq_1\overline{q}\right].\left[qq_2\overline{q}\right]=q(q_1q_2)\overline{q}

pour en déduire l'invariance par isométrie du produit vectoriel.

[modifier] Par le produit tensoriel

{{À recycler voir produit tensoriel}}

Soient deux vecteurs à trois composantes ui et vj. On peut définir le tenseur

u\otimes v =\begin{pmatrix}
u_1 v_1 & u_1 v_2 & u_1 v_3 \\
u_2 v_1 & u_2 v_2 & u_2 v_3 \\
u_3 v_1 & u_3 v_2 & u_3 v_3 \\
\end{pmatrix}

qui, en notation tensorielle, s'écrit simplement :

[u\otimes v]_{ij}= u_i\cdot v_j

Ce tenseur peut se décomposer en la demi-somme de deux tenseurs, l'un complètement symétrique :

[u\odot v]_{ij}=u_i\cdot v_j + u_j\cdot v_i

qui a 6 composantes indépendantes, et l'autre complètement anti-symétrique :

[u\wedge v]_{ij}=u_i\cdot v_j - u_j\cdot v_i

qui a 3 composantes indépendantes. On peut alors « transformer » ce tenseur anti-symétrique en un vecteur à trois composantes en utilisant le symbole de Levi-Civita \varepsilon_{ijk} (ce dernier est un pseudo-tenseur dont la définition fait intervenir la métrique et l'orientation) :

z_k = \varepsilon_{ijk} \cdot (u_i\cdot v_j - u_j\cdot v_i )

(selon la convention de sommation d'Einstein, on somme sur i et sur j dans la formule ci-dessus). Le vecteur zk est le produit vectoriel de ui et vj.

On voit que si l'on échange les indices i et j, le signe change, ce qui illustre l'antisymétrie du produit vectoriel. En outre le résultat est un « pseudovecteur » puisqu'il est renversé si on change l'orientation de l'espace.

[modifier] Applications

On définit l'opérateur rotationnel comme suit :

\overrightarrow\operatorname{rot} \ \vec u = \vec \nabla \wedge \vec u=\begin{vmatrix} 
\vec i & \vec j & \vec k \\ 
\partial_x  & \partial_y & \partial_z   \\ 
u_x & u_y & u_z 
\end{vmatrix}.
En mécanique du solide, c'est une opération très employée notamment dans la relation de Varignon qui lie les deux champs vectoriels d'un torseur. D'autre part, les équations de Maxwell sur l'électromagnétisme s'expriment à travers l'opérateur rotationnel, ainsi que les équations de la mécanique des fluides, notamment celles de Navier-Stokes.

Le moment d'une force est défini comme le produit vectoriel de cette force \scriptstyle\vec F par le vecteur \scriptstyle\vec{AP} reliant son point d'application A au pivot P considéré :

\vec M_{\vec F/P} = \vec F\wedge\vec{AP} = \vec{PA}\wedge\vec F.
C'est une notion primordiale en mécanique du solide.

[modifier] Références

[modifier] Ouvrages

[modifier] Notes et références

  1. Tous les espaces vectoriels euclidiens de dimension 3 sont deux à deux isométriques ; l'isométrie est bien définie à composition par une rotation près.
  2. ab Michael J. Crowe, A history of vector analysis : The Evolution of the Idea of a Vectorial System, Dover publications, inc., 1994, 2e éd. (1re éd. 1985), (ISBN 0-486-67910-1)
  3. ab Jean-Paul Collette, t. 2 : histoire des mathématiques, Vuibert, 1979, (ISBN 0-7767-0164-9), page 244
  4. Jean Dieudonné (dir.), Abrégé d'histoire des mathématiques 1700-1900 [détail des éditions] , 1986, page 107
  5. Michael J. Crowe, A history of vector analysis : The Evolution of the Idea of a Vectorial System, Dover publications, inc., 1994, 2e éd. (1re éd. 1985), (ISBN 0-486-67910-1), page 85
  6. ab Florian Cajori, A History of Mathematical Notations [détail des éditions] , pages 134 et 136
  7. Florian Cajori, A History of Mathematical Notations [détail des éditions] , page 138
  8. Voir section Définition #Comme produit de Lie.

[modifier] Voir aussi

[modifier] Liens internes

Articles d'algèbre linéaire générale
vecteur • scalaire • combinaison linéaire • espace vectoriel
famille de vecteurs sous-espace

colinéarité • indépendance linéaire
famille libre ou liée • rang
famille génératrice • base
théorème de la base incomplète

somme • somme directe
supplémentaire
dimension • codimension
droite • plan • hyperplan

morphismes et notions relatives

application linéaire • noyau • conoyau •  lemme des noyaux
pseudo-inverse•  théorème de factorisation • théorème du rang
équation linéaire • système • élimination de Gauss-Jordan
forme linéaire • espace dual • orthogonalité • base duale
endomorphisme • valeur, vecteur, espace propres • spectre
projecteur • symétrie • diagonalisable • nilpotent

en dimension finie

trace • déterminant • polynôme caractéristique
polynôme d'endomorphisme • théorème de Cayley-Hamilton
polynôme minimal • invariants de similitude
réduction • réduction de Jordan • décomposition de Dunford

matrice
enrichissements de structure

norme • produit scalaire • forme quadratique • topologie
orientation • multiplication • crochet de Lie • différentielle

développements

théorie des matrices • théorie des représentations
analyse fonctionnelle • algèbre multilinéaire
module sur un anneau

Opération binaire
numérique fonctionnelle en ensemble ordonné structurelle
élémentaire

+ addition
soustraction
× multiplication
÷ division
^ puissance

arithmétique

div quotient euclidien
mod reste euclidien
PGCD
PPCM

combinatoire

( ) coefficient binomial
A arrangement

composition
convolution
ensemble de parties

réunion
\ complémentation
intersection
Δ différence symétrique

ordre total

min minimum
max maximum

treillis

borne inférieure
borne supérieure

ensembles

× produit cartésien
union disjointe
^ puissance ensembliste

groupes

somme directe
produit libre
produit en couronne

modules

produit tensoriel
Hom homomorphismes
Tor torsion
Ext extensions

arbres

enracinement

variétés connexes

# somme connexe

espaces pointés

bouquet
smash produit
joint

vectorielle
(.) produit scalaire
produit vectoriel
algébrique
[,] crochet de Lie
{,} crochet de Poisson
produit extérieur
homologique
cup-produit
• produit d'intersection
séquentielle
+ concaténation
logique booléenne
ET (conjonction) OU (disjonction) OU exclusif IMP (implication) EQV (coïncidence)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -