Wasserturbine
aus Wikipedia, der freien Enzyklopädie
Eine Wasserturbine ist eine Turbine, welche die Wasserkraft nutzbar macht. In einem Wasserkraftwerk wird die potenzielle bzw. kinetische Energie des Wassers mittels der Wasserturbine in mechanische Energie umgewandelt, die Turbine wird mithilfe des strömenden Wassers in Drehung versetzt. Die Drehung der Turbinenwelle kann als mechanische Leistung für den Antrieb von Transmissionsgetrieben verwendet werden, häufiger jedoch dient sie zum Antrieb eines Generators, welcher die Rotationsenergie in elektrischen Strom umwandelt.
Inhaltsverzeichnis |
[Bearbeiten] Technische Grundlagen
[Bearbeiten] Leistung
Die Leistung P (in Watt) einer Wasserturbine errechnet sich aus dem Wirkungsgrad der Turbine ηT multipliziert mit der Dichte des Wassers ρ (kg/m3), der Erdbeschleunigung g (m/s2),der Fallhöhe h (m) und dem Durchflussvolumen (m3/s)
Der Wirkungsgrad variiert je nach Typ, Alter und Betriebspunkt der Turbine. Neue Francis-Turbinen erreichen Wirkungsgrade von knapp über 94 %, heißt also ηT = 0,94 .
Die Fallhöhe h entspricht nicht der tatsächlichen Höhe zwischen Ober- und Unterwasser. In ihr sind bereits die Verluste durch die Reibung des Wassers in den Rohrleitungen berücksichtigt. Sie hat dennoch die Einheit Meter.
Veranschaulichen kann man sich diesen Zusammenhang, indem man dieselbe Formel für eine Pumpe benutzt, die das Wasser bspw. vom Unter- zum Oberwasser pumpt. Führt man dieser Pumpe mechanische Leistung zu, so dass sich ihr Laufrad dreht, berechnet sich der Wirkungsgrad ηPumpe aus dem Quotient der zugeführten Leistung und dem Produkt aus . Hier ist die Höhe jedoch nur die tatsächliche Förderhöhe der Pumpe – ebenso ist dies dann auch bei der Wasserturbine der Fall.
In einigen wenigen Wasserkraftwerken wird die Drehung der Turbine mittels eines Getriebes auf einen Generator übertragen. Somit kommen zu den Verlusten der Turbine noch die Verluste durch das Getriebe ηGetriebe hinzu und es berechnet sich die mechanische Leistung folgendermaßen:
Weiterhin hat auch der Generator noch Verluste. Die letztendlich erzeugte elektrische Leistung der Turbine errechnet sich aus:
bzw.
mit
Aus der Formel für die elektrische Leistung wird ersichtlich, dass eine große Fallhöhe einen geringen Wasserdurchfluss kompensieren kann und umgekehrt. Das bedeutet: Die relativ geringe Wassermenge eines Gebirgsbachs, der jedoch eine Fallhöhe von mehreren hundert Metern hat, ist unter Umständen in der Lage, mehr Strom zu erzeugen, als eine große Wassermenge eines Flusses, die gerade einmal den Höhenunterschied eines Stauwehrs überwindet. Dieser rein lineare Zusammenhang widerspricht nur unserem Gefühl.
[Bearbeiten] Konstruktive und historische Details
Um einen optimalen Wirkungsgrad zu erzielen, muss die Turbine den unterschiedlichen Fallhöhen und Wasserdurchflussmengen angepasst sein. Ein Speicherkraftwerk in den Alpen braucht demnach eine andere Turbine als ein Laufwasserkraftwerk am Rhein.
Wasserturbinen werden mit Leistungen von etwa 200 Watt bis hin zu tausend Megawatt ausgeführt. Die Turbinen der Großkraftwerke werden individuell konstruiert und angefertigt, bevor sie auf der Baustelle des Kraftwerkes endgültig zusammengebaut werden. Die Laufräder solcher Turbinen besitzen einen Durchmesser von bis zu 11 m. Wasserturbinen lassen sich allerdings nicht beliebig miniaturisieren, da Kleinturbinen einen ähnlichen Aufwand zur Regelung haben wie Großturbinen und besonders empfindlich auf Wasserverschmutzungen reagieren.
Eine Besonderheit der Wasserturbine ist die aufwändige Regelung ihrer Drehzahl bei dem immer leicht schwankenden Durchfluss des Wassers. Die ausgeführten Regler halten mit hydraulisch betätigten Stellorganen (Armaturen und Leitschaufeln) die Drehzahl konstant und sichern die Turbine außerdem gegen "Durchgehen", falls das Drehmoment an der Generatorwelle beispielsweise wegen eines Kurzschlusses abfallen sollte.
Auf eine Drehzahlregelung kann bei kleinen Turbinen im Netzbetrieb verzichtet werden, da der Generator bei Netzeinspeisung aufgrund der Netzfrequenz auf konstanter Drehzahl gehalten wird. Bei Netzausfall muss dann aber mittels Klappen oder Schützen die Wasserzufuhr unterbrochen werden, um das Durchgehen zu verhindern, wenn die Turbine und der Generator nicht für die Leerlaufdrehzahl ausgelegt wurde. Normalerweise liegt diese etwa bei der doppelten bis zweieinhalbfachen Betriebsdrehzahl.
Der Anteil von Turbine und Regler an den gesamten Investitionen eines Wasserkraftwerkes sind erheblich. Sie betragen bei Kleinanlagen bis zu 50 %, bei Großanlagen 10 bis 20 %. Wasserturbinen zeichnen sich andererseits durch eine erhebliche Lebensdauer aus, in manchem Kraftwerk sind Maschinen seit dem Ende des Ersten Weltkrieges im Einsatz. Sie zählen in diesem Falle zu den technischen Denkmälern, die immer noch in Betrieb stehen.
Die technikgeschichtlichen Vorgänger der Wasserturbinen waren Wasserräder mit senkrecht angeordneter Welle, die im 18. und 19. Jahrhundert in Gebrauch kamen. Der Name Turbine stammt von Claude Burdin (* 1790, † 1873), der 1824 seine Erfindung so nannte. 1826 hatte die französische "Societe d'encouragement" in Paris einen Preis von 6.000 französischen Franc auf die Herstellung von Turbinen ausgeschrieben. Die ersten Bewerbungen waren resultatlos, bis es erst 1833 dem französischen Ingenieur Benoit Fourneyron gelang, den Preis mit der nach ihm benannten Turbine zu erwerben, deren Theorie 1838 von Jean-Victor Poncelet ermittelt wurde.
Die Fourneyron-Turbine arbeitet ähnlich wie die ihr später folgende Francis-Turbine, nur dass die Leitschaufeln eine feste Stellung besitzen und das Wasser in umgekehrter Reihenfolge von Innen auf das außen liegende Laufrad führen. Die Bauart eignete sich gut bei gleichmäßigen Wasserzuflüssen und setzte sich innerhalb weniger Jahre gegen das unterschlächtige Wasserrad durch. Bei optimalen Wasserdurchsatz besaß die Turbine einen Wirkungsgrad von bis zu 85 %. Sie wird trotz ihres einfachen Aufbaues heute nicht mehr hergestellt. Um die Fourneyron-Turbine an das verfügbare Betriebswasser anpassen zu können, wurde an der Innenseite der Außenschaufeln entlang eine bewegliche Abdeckung angebracht, mit deren Hilfe der Wasserdurchlauf veränderbar war.
Die Fourneyron-Turbine wurde mehrfach verbessert:
- 1837 durch den Deutschen Karl Anton Henschel,
- 1838 durch den Amerikaner Samuel B. Howd, der das Laufrad ins Innere des Leitwerks verlegte,
- sowie den Engländer James Thomson, der die verstellbaren Leitschaufeln und die gekrümmten Laufradschaufeln entwickelte.
[Bearbeiten] Turbinen-Typen
Nach dem Schluckvolumen und der zur Verfügung stehenden Fallhöhe unterscheidet man:
- Kaplan-Turbine mit großem Volumenstrom und geringer Fallhöhe, Einsatz im Flusskraftwerk
- Francis-Turbine mit mittlerem Volumenstrom und Fallhöhe, universell einsetzbar
- Pelton-Turbine mit geringem Volumenstrom und großen Fallhöhen, Einsatz im Mittel- und Hochgebirge in Speicherkraftwerken
sowie
- Durchströmturbinen für kleine Fallhöhen und geringe Volumenströme
[Bearbeiten] Überdruckturbinen
Der Druck des Wassers ist beim Eintritt am höchsten und nimmt bis zum Austritt stetig ab. Es wird daher potentielle und kinetische Energie auf das Laufrad übertragen. Dies gilt für die Francis-Turbine und die Kaplan-Turbine.
[Bearbeiten] Gleichdruckturbinen
Der Wasserdruck ändert sich beim Durchströmen der Turbine nicht. Es wird nur kinetische Energie auf das Laufrad übertragen. Turbinen dieser Bauart sind die Pelton-Turbine und die Durchströmturbine.
[Bearbeiten] Literatur
- Adolf J. Schwab: Elektroenergiesysteme – Erzeugung, Transport, Übertragung und Verteilung elektrischer Energie, Springer Verlag 2006, ISBN 3-540-29664-6