See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Ramanstreuung – Wikipedia

Ramanstreuung

aus Wikipedia, der freien Enzyklopädie

Illustration von Rayleigh-, Raman- und Anti-Raman-Streuung
Illustration von Rayleigh-, Raman- und Anti-Raman-Streuung

Die Raman-Streuung (auch Raman-Effekt) bezeichnet den inelastischen Streuvorgang von Licht an einem Molekül. Dieses Phänomen wurde nach seinem Entdecker, dem indischen Physik-Nobelpreisträger Chandrasekhara Venkata Raman, benannt. Das emittierte Streulicht ist bei der Raman-Streuung spezifisch und besitzt eine höhere oder niedrigere Frequenz als die des einfallenden Lichtstrahls. Der Anteil des frequenzverschobenen Lichtes ist jedoch um einen Faktor 103-104 geringer als der des elastisch gestreuten Lichtes, welches als Rayleigh-Streuung bezeichnet wird.

Inhaltsverzeichnis

[Bearbeiten] Beschreibung

Findet eine Wechselwirkung zwischen einem Molekül oder einem Kristall und einem Photon statt, kommt es mit einer sehr geringen Wahrscheinlichkeit zu einer bleibenden Energieübertragung zwischen dem anregenden Photon und der angeregten Materie. Dabei ändert sich die Rotations- und Schwingungsenergie des beteiligten Moleküls bzw. die Schwingungsenergie in einem Kristallgitter. Befindet sich das Molekül nach dem Streuvorgang auf einem höheren Energieniveau als zuvor, so ist die Energie und die Frequenz des emittierten Photons geringer als die des anregenden Photons. Dieser Vorgang wird als Stokes-Raman-Streuung bezeichnet. Befindet sich das streuende Molekül nach dem Anregungsvorgang auf einem niedrigeren Energieniveau als zuvor, so besitzt das gestreute Photon eine höhere Energie und eine höhere Frequenz als die des anregenden Photons. Dies wird als Anti-Stokes-Raman-Streuung bezeichnet. Die Energiedifferenz zwischen eingestrahltem und gestreutem Photon wird als Raman-Frequenzverschiebung bezeichnet und ist charakteristisch für das streuende Molekül. Über das Plancksche Wirkungsquantum ist die Energie eines Photons linear mit seiner Frequenz verknüpft. Liegt das streuende Molekül in gasförmiger oder flüssiger Phase vor, so werden Molekülschwingungen und Moleküldrehungen betrachtet. Handelt es sich bei der Probensubstanz um einen kristallinen Festkörper, sind Gitterschwingungen (Phononen), Elektron-Loch-Anregungen oder Spinflip-Prozesse für den Raman-Effekt verantwortlich.

Der Effekt wurde 1923 von Adolf Smekal vorhergesagt und 1928 durch Raman experimentell nachgewiesen. Er erhielt dafür 1930 den Nobelpreis für Physik.

[Bearbeiten] Phonon-Raman-Streuung

Phonon-Raman-Streuung bezeichnet die inelastische Lichtstreuung an optischen Gitterschwingungen (optischen Phononen) in Kristallen. Die Streuung an akustischen Phononen nennt man Brillouin-Streuung.

Der Zustandsraum der Phononen im kristallinen Festkörper kann durch die Phonon-Bandstruktur veranschaulicht werden. Es handelt sich dabei um Energieflächen im Raum der Wellenzahlen. Ein Festkörper aus N Atomen mit r-atomiger Basis besitzt im Dreidimensionalen 3r Dispersionszweige mit je N Schwingungszuständen, also insgesamt 3Nr Schwingungsmodi. Diese 3r Dispersionszweige teilen sich in 3 akustische Zweige und 3r-3 optische Zweige auf. Für akustische Phononen verschwindet die Frequenz im Grenzfall langer Wellenlängen linear, die Steigung ist durch die Schallgeschwindigkeit gegeben. Optische Phononen haben dagegen eine feste endliche Frequenz im Grenzfall langer Wellenlängen.

Da die Wellenlänge von sichtbarem Licht deutlich größer ist (mehrere Potenzen) als der Atomabstand im Festkörper, bedeutet dies im reziproken Raum, dass die Anregung von Gitterschwingungen durch Licht nahe am Γ-Punkt stattfindet. Das hat zur Folge, dass der Impulsübertrag nur sehr klein ist. Eine Anregung von mehreren Phononen, deren Gesamtimpuls nahe Null ist, ist ebenfalls möglich (Mehrphononenprozess). Ein Beispiel ist die Anregung von zwei entgegengesetzt laufenden transversal-akustischen Phononen am X-Punkt (2TAX), deren Energien sich addieren. Ihr Gesamtimpuls ist aber null.

[Bearbeiten] Physikalische Beschreibung

Zur Berechnung der Wechselwirkung von Materie und Licht dient der Raman-Tensor  \bold R , der den Zusammenhang der Streuintensität von der Polarisation des eingestrahlten Lichts \hat e_\mathrm{i} und des gestreuten Lichts \hat e_\mathrm{s} beschreibt:

I_\mathrm{s} \sim |\hat e_\mathrm{s} \cdot \bold R \cdot  \hat e_\mathrm{i}|^2

Da \hat e_\mathrm{i} und \hat e_\mathrm{s} experimentell frei wählbar sind, bestimmt allein der Raman-Tensor das Streuverhalten der Materie. Er wird sowohl durch die Symmetrie des Festkörpers (bzw. Moleküls) als auch durch die Symmetrie der Gitterschwingung (bzw. Molekülschwingung) vorgegeben. Entscheidend ist hier die Kenntnis der Punktgruppen und der möglichen Symmetrieoperationen.

Mit Hilfe des Raman-Tensors lassen sich die Raman-Auswahlregeln bestimmen.

[Bearbeiten] Raman-Streuung in Plasmen

Während man in der Atom- und Molekülphysik unter dem Raman-Effekt meist die inelastische Streuung von Licht an Gitterschwingungen versteht, meint man in der Plasmaphysik damit die Streuung an Plasmawellen. In der Vorwärtsrichtung sieht man im Spektrum zwei spektrale Seitenbänder mit den Frequenzen \omega = \omega_\mathrm{L} \pm \omega_\mathrm{p}, wobei

\omega_\mathrm{p} = \sqrt{\frac{n e^2}{\varepsilon_0 m_\mathrm{e}}}

die Plasmafrequenz ist (n ist die Elektronendichte (Anzahl pro Volumen), me die Elektronenmasse, \varepsilon_0 Dielektrizitätskonstante des Vakuums). In Rückwärtsrichtung sieht man meistens nur die Laserfrequenz ωL und die Stokesfrequenz ωS = ωL − ωp. Das Licht verstärkt die Plasmawelle während des Streuprozesses (Raman-Instabilität). Das Plasma wird dabei aufgeheizt. Die Formel gilt für die Plasmafrequenz im freien Plasma. Für ein Elektronengas im metallischen Festkörper gilt:

\omega_\mathrm{p} = \sqrt{\frac{n e^2}{\varepsilon_0 \varepsilon_\mathrm{Rumpf} m^*}}

\varepsilon_\mathrm{Rumpf} stellt dabei die relative Permittivität des Ionenrumpfes des Metallkristalls dar, m * die Effektive Masse.

[Bearbeiten] Der Resonanz-Raman-Effekt

Wenn die Frequenz des anregenden Photons resonant ist mit einem elektronischen Übergang im Molekül bzw. Kristall, ist die Streueffizienz um zwei bis drei Größenordnungen erhöht.

[Bearbeiten] Die Oberflächenverstärkte Raman-Streuung (Surface-enhanced Raman scattering, SERS)

Raman-Streuung von Molekülen besitzt einen sehr kleinen Streuquerschnitt (ca. 10 − 20cm − 1), so dass man eine relative hohe Konzentration an Molekülen benötigt, um ein detektierbares Signal zu erhalten. Raman-Spektren einzelner Moleküle sind so nicht möglich.

Wenn sich das Molekül aber nahe einer metallischen Oberfläche (vor allem Kupfer, Silber und Gold) befindet, kann das Raman-Signal extrem verstärkt werden. Hierbei werden zwei Mechanismen diskutiert.

  • Bei der chemischen Verstärkung bildet das Molekül einen Komplex, welcher neue Energieniveaus gegenüber dem Molekül besitzt. Angeregte Elektronen können vom Metall zum Molekül und zurück springen und dabei das Molekül in einem angeregten Schwingungszustand zurücklassen. Man spricht auch von einem vorübergehenden Ladungsübergang. Es werden Verstärkungen bis zu 102 angegeben. Damit sich ein Komplex bilden kann, wird eine chemische Bindung zwischen Metall und Molekül benötigt, d.h. das Molekül muss an der Oberfläche chemisorbiert sein.
  • Die elektromagnetische Verstärkung beruht auf Anregung von Plasmonen im Metall, welche an Spitzen an der Oberfläche oder in Partikeln lokal sehr hohe Felder erzeugen kann. Dieses Feld zusammen mit dem einfallenden Licht regen das Molekül an und führen so zu einer verstärkten Raman-Streuung. Es werden Verstärkungen 106 bis 1010 diskutiert. Über der Oberfläche fällt dieser Effekt rasch ab (ca. mit Abstand − 9), aber das Molekül braucht nicht an der Oberfläche gebunden zu sein.

Wenn beide Effekte zusammen mit dem Resonanz-Raman-Effekt wirken, ist es möglich, Raman-Spektren einzelner Moleküle zu detektieren.

[Bearbeiten] Abgrenzung

Streuung von hochenergetischen elektromagnetischen Wellen (mind. Röntgenstrahlung) an freien (bzw. quasifreien) Elektronen bezeichnet man als Compton-Streuung (Compton-Streuung ist ein Beweis dafür, dass elektromagnetische Wellen aus Photonen bestehen). Hier handelt es sich ebenfalls um inelastische Lichtstreuung. Bei dem Streuprozess wird Energie auf das Elektron übertragen: Dessen Impuls vergrößert sich. Bei kleineren Energien des einfallenden Lichtes ist der Impulsübertrag vom streuenden Licht auf das Elektron vernachlässigbar. Die Streuung ist dann elastisch und heißt Thomson-Streuung.

[Bearbeiten] Anwendung

Die Raman-Streuung bildet die Grundlage für die Raman-Spektroskopie zur Untersuchung von Materialeigenschaften wie Kristallinität, Orientierung, Zusammensetzung, Verspannung, Temperatur, Dotierung usw.

[Bearbeiten] Siehe auch


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -