We provide Linux to the World

ON AMAZON:



https://www.amazon.com/Voice-Desert-Valerio-Stefano-ebook/dp/B0CJLZ2QY5/



https://www.amazon.it/dp/B0CT9YL557

We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Geysir – Wikipedia

Geysir

aus Wikipedia, der freien Enzyklopädie

Ein Geysir (isländisch geysa – wirbeln, strömen), auch Geiser, ist eine heiße Quelle, die ihr Wasser in regelmäßigen oder unregelmäßigen Abständen als Fontäne ausstößt. Einen solchen Ausbruch bezeichnet man als Eruption. Namensgebend für den Geysir war der Große Geysir auf Island.

Geysir Strokkur auf Island
Geysir Strokkur auf Island

Inhaltsverzeichnis

[Bearbeiten] Vorkommen

Schema eines Geysirs nach White (Beispiel Steamboat Springs) nicht maßstabsgerecht
Schema eines Geysirs nach White (Beispiel Steamboat Springs) nicht maßstabsgerecht

Geysire sind selten und erfordern eine spezielle Kombination von geologischen und klimatischen Bedingungen, die nur an wenigen Orten großflächig bestehen. Geysire sind von drei Faktoren abhängig: einer Wasserversorgung in Form eines Grundwasserleiters, einer Wärmequelle (eine Plume oder Superplume) und mindestens einem Reservoir mit zugehörigem Leitungssystem (siehe Bild).

Es gibt lediglich sechs Geysirfelder größeren Ausmaßes:

In den USA existieren vereinzelte Geysire in Nevada, Kalifornien, Oregon und Alaska.

Über eine nennenswerte Anzahl verfügen Papua-Neuguinea (16 aktive Geysire), Neubritannien (16), Narage (1), Lihir- und Ambitle-Inseln (9), Deidei- und Iamelele-Inseln (12) sowie Indonesien mit 8 aktiven Geysiren auf Sumatra, 4 auf Java, 3 auf Celebes und einem aktiven auf der Insel Bacan.

Daneben existieren Geysire noch in Peru (10), Volksrepublik China (10), Mexiko (9), auf den Fidschiinseln (5), Japan (4), Kenia (4), Äthiopien (2), Bolivien (2), Myanmar (1) und Bulgarien (1).

Über 300 aktive Geysire, etwa zwei Drittel von allen weltweit existierenden, befinden sich im Yellowstone-Nationalpark. Dagegen gibt es in Island, im „Land der Geysire“ lediglich zwei nennenswerte Geysire: den Großen Geysir und den Strokkur (dt. Butterfass). Letzterer eruptiert unregelmäßig im Abstand von wenigen Minuten und manchmal auch bis zu dreimal kurz hintereinander. Der Große Geysir ist nach längerer Ruhepause durch ein Erdbeben im Jahr 2000 wieder zu mehr Aktivität animiert worden und eruptiert derzeit (Stand 2006) wieder etwa einmal am Tag, jedoch mit geringerer Höhe als früher.

Die Zahl der aktiven Geysire ist mit Vorsicht zu betrachten, da Geysire sehr schnell inaktiv werden können und in selteneren Fällen inaktive Geysire zum Beispiel durch Erdbeben wieder aktiviert werden. Mehrere der oben gezählten Geysire sind außerdem in Gefahr, durch geplante Nutzung geothermischer Energie zu erlöschen oder inaktiv zu werden. (siehe Durch Menschen zerstörte Geysire).

Weitere, recht große Geysirfelder gab es bis in die 1980er Jahre in Nevada: Beowawe und Steamboat Springs. Durch die Errichtung geothermischer Kraftwerke in der Nähe wurde die vorhandene Hitze allerdings verringert und der Wasserspiegel sank so weit, dass die Geysire nicht mehr aktiv sind.

[Bearbeiten] Eigenschaften

Funktionsweise eines Geysirs
Funktionsweise eines Geysirs

Das erste naturwissenschaftliche Modell für die Funktion eines Geysirs erklärte 1846 der deutsche Chemiker Robert Wilhelm Bunsen auf Grund eines leicht nachvollziehbaren Experiments, in dem ein Modell-Geysir in verkleinertem Maßstab mit beheiztem Kessel und einer Röhre als Kanal nachgebaut wurde und auch „eruptives Verhalten“ zeigt.

Geysire kommen in aktiven vulkanischen Gebieten vor. Sie besitzen einen Kanal in Form einer Röhre, der in einem unterirdischen Wasserreservoir mündet. Typischerweise werden Geysire über das Grundwasser gespeist. Das ausgestoßene Wasser hat eine Temperatur zwischen 90° C und 100° C, also nahe am Siedepunkt.

Der Eruptionskanal spielt eine wesentliche Rolle bei den Eruptionen des Geysirs. Ist er zu weit, so kann der Wasserdampf ungehindert austreten (Dampfquelle) oder sofern der Dampf weit genug abkühlt und kondensiert, entsteht eine heiße Quelle. Je enger der Kanal ist, desto stärker wird die thermische Konvektion unterbunden, und von seiner Länge hängt der Druck ab, den die Wassersäule auf das erhitzte Wasser weiter unten ausübt.

Die Wärme einer Magmakammer erhitzt das Grundwasser auf über 100° C. Durch den Druck der darüber stehenden Wassersäule siedet das Wasser zunächst nicht (Siedepunktserhöhung). Erst wenn die Temperatur auf weit über 100° C angestiegen ist, steigen einzelne Dampfblasen den engen Kanal aufwärts und pressen einen Teil der Wassersäule nach oben. Dadurch sinkt unten der Druck rapide ab und das überhitzte Wasser geht schlagartig in Dampf über.

Herausgeschleudert wird eine Mischung aus kochendheißem Wasserdampf, kühlerem beziehungsweise kondensiertem Wasser und gelösten Mineralien sowie Gesteinspartikel. In Jahrtausenden werden durch die ständigen Eruptionen stabile Schächte in das Gestein gegraben, durch die der Dampf ungehindert zur Erdoberfläche gelangen kann. Ist der Weg zur Oberfläche lang genug, so kondensiert der Dampf wieder und tritt als heiße Quelle zu Tage.

Im wesentlichen wird das Bunsen-Modell heute noch als zutreffend angesehen, auch wenn Bunsen meinte, dass die Verhältnisse in der Natur selbst verwickelter seien und dass statt eines senkrechten Kanals eine „gekniete Röhre“ vorhanden sein müsse, an deren höchstgelegenem unterirdischem Teil sich Dampf sammeln müsse, bis der Druck ausreicht, um das Wasser auszuschleudern. Untersuchungen am Old Faithful mit einer Temperatur-, Druck- und Kamerasonde im Jahr 1992 haben aber gezeigt, dass das Modell mit dem gerade aufsteigenden Kanal hinreichend ist (Lit.: Scott Bryan, 1995).

John Sargent Rinehart beschreibt (1980) 6 Geysirmodelle:

  • Modell A: Ein unterirdisches Reservoir ist mit einem langen Eruptionskanal verbunden, der oberirdisch in einem nicht getauchten Kegel mündet. Dieses Modell wird von anderen Quellen auch als düsenförmiger (cone type) Geysir beschrieben. Eruptionstyp: Ziemlich regelmäßiges Intervall, lange Eruptionen, große Wurfhöhe, Wasser- und Dampfstrahl. Ein typischer Vertreter dieses Modells ist der Geysir Old Faithful im Yellowstone-Nationalpark.
  • Modell B: Tiefer, enger Eruptionskanal ohne große unterirdische Kammer, nahezu ebene Mündung des Kanals. Eruptionstyp: kurze heftige Eruptionen. Ein typischer Vertreter dieses Modells ist der Round-Geysir, Yellowstone-Nationalpark.
  • Modell C: Ähnlich Modell A, aber kein hoher über dem Wasserspiegel mündender Kegel als Mündung des Eruptionskanals, sondern eine Düse knapp unter der Wasseroberfläche eines Teiches. Eruptionstyp ähnlich Modell A, aber kein ungestörter Wasserstrahl, sondern teilweise hoch geworfener Wasserschwall.
  • Modell D: Ähnlich Modell C, aber in den Eruptionskanal mündet ein komplexeres System mehrerer Seitenkammern, die sich nacheinander entleeren. Eruptionstyp: Serie von Eruptionen mit unregelmäßigen kurzen Pausen, Gruppen von Ausbrüchen, Wasserschwall.
  • Modell E: Der Eruptionskanal führt von einer größeren unterirdischen Kammer in einen Teich. Eruptionstyp: Lange, einigermaßen regelmäßige Eruptionen, die wenig heftig sind, geringe Wurfhöhen, Wasserschwall, kein Wasserstrahl.
  • Modell F: Tiefer, langer Eruptionskanal, der in einem Teich mündet. Eruptionsverhalten wie Modell E.

Folgende Faktoren beeinflussen die Tätigkeit von Geysiren:

  • Jahreszeiten und Niederschlagsmengen (mehr oder weniger signifikant), da Niederschläge teilweise in dem abgedichteten System, das ein Geysir voraussetzt, sehr lange brauchen, bis sie im Grundwasserleiter des Geysirs ankommen (dies kann über das Verhältnis der Isotope des Wasserstoffs im ausgeworfenen Wasser bestimmt werden);
  • Luftdruck (signifikant), da der Siedepunkt des Wassers direkt vom Luftdruck abhängig ist;
  • Gezeitenkräfte (signifikant), hohe Gezeitenkräfte weiten die Spalten, die den Geysir mit Grundwasser versorgen,
  • Erdbebentätigkeit (von Geysir zu Geysir unterschiedlich und teilweise nicht direkt abhängig vom Abstand zum Epizentrum), allerdings lassen sich anhand der Tätigkeit von Geysiren Erdbeben noch nicht vorhersagen.

[Bearbeiten] Arten von Geysiren

Bezogen auf die Periodizität der Eruptionen gibt es mehr oder weniger regelmäßig ausbrechende und unregelmäßig ausbrechende Geysire. Es gibt Geysire, bei denen sich starke und schwache Eruptionen unterscheiden lassen. Dass starke Eruptionen die unregelmäßigeren sind,lässt sich nicht nachweisen. Der Steamboat-Geysir im Yellowstone-Nationalpark hat sehr unregelmäßige starke Eruptionen, der Castle-Geysir gehört zu den Geysiren mit dem regelmäßigsten Intervall, solange er nicht in schwachen Eruptionen ausbricht. Weitere Unterscheidungsmöglichkeiten sind im Abschnitt Begriffsdefinitionen beschrieben.

[Bearbeiten] Fotosequenz eines eruptierenden Geysirs

Eruption des Strokkur
Ausbruch eines Geysirs (1/6)
Ausbruch eines Geysirs (1/6)
Ausbruch eines Geysirs (2/6)
Ausbruch eines Geysirs (2/6)
Ausbruch eines Geysirs (3/6)
Ausbruch eines Geysirs (3/6)
Ausbruch eines Geysirs (4/6)
Ausbruch eines Geysirs (4/6)
Ausbruch eines Geysirs (5/6)
Ausbruch eines Geysirs (5/6)
Ausbruch eines Geysirs (6/6)
Ausbruch eines Geysirs (6/6)

[Bearbeiten] Geysire in Neuseeland

Die meisten der neuseeländischen Geysire wurden seit 1886 durch natürliche Einflüsse oder durch Eingriff des Menschen zerstört.

  • Das Rotomahana Geysirfeld ging durch den Ausbruch des Vulkans Mount Tarawera 1886 verloren.
  • Zwei Drittel der Geysire im Geysirfeld Orakei Korako wurden durch die Errichtung des Ohakuri-Staudamms 1961 überflutet.
  • Das Geysirfeld Taupo Spa ging verloren, als der Fluss Waikato in den fünfziger Jahren umgeleitet wurde.
  • Das Wairakei Geysirfeld existiert nicht mehr, seitdem in der Nähe ein geothermisches Kraftwerk errichtet wurde.
  • Der bisher größte Geysir, der Waimangu-Geysir erlosch aufgrund natürlicher Ursachen; er existierte nur von 1900 bis 1904.

Das größte verbleibende Geysirfeld in Neuseeland ist heute Whakarewarewa in der Nähe von Rotorua.

[Bearbeiten] Berühmte Geysire

Beehive-Geysir
Beehive-Geysir
Great Fountain Geysir bei Sonnenuntergang
Great Fountain Geysir bei Sonnenuntergang
  • Beehive-Geysir (Yellowstone-Nationalpark, mittleres Intervall in der Messperiode 2003 ca. 18 Stunden unregelmäßig, 45-55 m Höhe, 4-5 Minuten Dauer, düsenartig)
  • Castle-Geysir (Yellowstone-Nationalpark, mittleres Intervall 2003 außerhalb der Zeiten mit kleinen Eruptionen ca. 12 Stunden 45 Minuten IBE (interval between eruptions, siehe Abschnitt Intervall weiter unten) vorhersagbar, 20 bis 30 m Höhe, große Eruption: 20 Minuten Wasserphase, 40 Minuten Dampfphase; düsenartig)
  • Giant-Geysir (Yellowstone-Nationalpark, Intervall sehr unregelmäßig und zeitweilig extrem lang, Eruption derzeit 1 x pro Woche (Stand: Sept. 2006), Eruptionsdauer bis über eine Stunde, 50-83 m Höhe, düsenartig, ca. 2 m Durchmesser)
  • Giantess-Geysir (Yellowstone-Nationalpark, sehr unregelmäßig und zeitweilig extrem lang (mehrere Monate), 30-60 m Höhe, Wassereruptionen: Ausbrüche 5-10 Minuten Wasserphase dann 30 bis 60 Minuten Pause, Dampferuptionen: Dampfphase bis zu 6 Stunden, springbrunnenartig)
  • Grand Geysir (Yellowstone-Nationalpark, in der Messperiode 2003 mittleres Intervall von 9:50 Stunden IBE, nicht so regelmäßig wie Old Faithful, 50-60 m Höhe, 10-12 Minuten Dauer, bricht oft mehrmals unmittelbar hintereinander aus, auf Ausbrüche bis 9 Minuten Dauer folgt in der Regel ein zweiter sehr spektakulärer Ausbruch zur vollen Wurfhöhe, springbrunnenartig)
  • Great-Fountain-Geysir (Yellowstone-Nationalpark, ca. 30-50 m, Intervall 12 Stunden +- 2 Stunden, ca. 10 % der Ausbrüche als besonders gewaltige Eruption, spuckt mit vielen Pausen (bis 5 Minuten) für ca. 1,5 Stunden)
  • Großer Geysir (Island, alle 24 bis 30 Stunden, 10 m Höhe) Nach langer Inaktivität seit einem Erdbeben im Juni 2000 wieder aktiv.
  • Grotto-Geysir (Yellowstone-Nationalpark, Intervall unregelmäßig aber vorhersagbar, 10 bis 13 m Höhe, 1-12, selten über 26 Stunden Dauer, springbrunnenartig)
  • Old Faithful Geysir (Yellowstone-Nationalpark, Intervall ca. 91 Minuten IBE vorhersagbar, im Jahr 2003 minimal 45 Minuten, maximal 124 Minuten; 30-55 m Höhe, 2-5 Minuten Dauer, düsenartig)
  • Strokkur Geysir (Island, Intervall ca. 10 Minuten, 20-30 m Höhe, kurze heftige Eruption)

[Bearbeiten] Geysire in der Dichtung

Liebevoll, wenn auch nicht in den Einzelheiten korrekt beschreibt Karl May die Geysire, Sinterterrassen und Schlammtöpfe im Yellowstone-Nationalpark in seiner Amerika-Erzählung Der Sohn des Bärenjägers (anderer Titel: Unter Geiern - 1. Teil) im Kapitel Am P'a-wakon-tonka.

[Bearbeiten] Das Ende eines Geysirs

[Bearbeiten] Warum ein Geysir inaktiv wird oder erlischt

Der Champagne Pool im Wai-O-Tapu thermal wonderland, Neuseeland ist eine heiße Quelle, die für ihre Farbgebung, welche durch Anlagerung von Sulfiden entsteht, bekannt ist.
Der Champagne Pool im Wai-O-Tapu thermal wonderland, Neuseeland ist eine heiße Quelle, die für ihre Farbgebung, welche durch Anlagerung von Sulfiden entsteht, bekannt ist.

Durch die permanenten Eruptionen vergrößert sich der Schlot (Eruptionskanal) mit der Zeit und der Geysir wird zu einer heißen Quelle. In einigen Gegenden kommt jedoch das Mineral Rhyolit vor, welches in dem überhitzten Wasser löslich ist. Beim Aufsteigen im Kanal kristallisiert es wieder aus, stabilisiert so den Kanal und schützt ihn vor dem Aufweiten. Menschengeschaffene künstliche Geysire sind in dieser Hinsicht meist sehr stabil, da das Bohrloch in der Regel verrohrt wird.

Erdbeben in der Umgebung eines Geysirs können zu einer wesentlichen Veränderung seines Eruptionsverhaltens führen. Er kann nicht nur wieder erwachen, er kann auch inaktiv werden oder erlöschen.

Der Bau von geothermischen Kraftwerken in der Nähe von Geysiren führt meistens dazu, dass die Geysire nicht mehr ausbrechen, da der Grundwasserspiegel und die Temperatur des Wassers, das den Geysir speist, sinken.

Die Zugabe von Detergentien wie Spülmittel oder Schmierseife zum Thermalwasser, um einen Ausbruch zu provozieren, wirkt sich auf Dauer auch nachteilig auf die Eruptionstätigkeit aus. Wo diese Praxis früher üblich war, um Touristen einen Ausbruch vorzuführen, ist sie inzwischen meist durch Gesetzgebung verboten (Beispiel: Strokkur, Island).

Oft führt auch Vandalismus zum Ende der Eruptionstätigkeit eines Geysirs. Werden Steine oder Gegenstände in den Schlot geworfen, kann die Eruptionstätigkeit aufhören. Meist wird der Eruptionskanal verstopft, der Druck der Eruption reicht nicht aus, um den Fremdkörper auszuwerfen und der Geysir wird zur heißen Quelle.

Das spektakulärste Ende eines Geysirs steht bevor, wenn das umgebende Gestein dem Dampfdruck nicht widerstehen kann. Dies führt zur Explosion des Geysirs. (Beispiel: Porkchop-Geysir im Norris-Geysir-Becken, Yellowstone-Nationalpark explodierte am 5. September 1989).

[Bearbeiten] Durch Menschen zerstörte Geysire

Geysire sind sehr empfindliche Naturphänomene. Durch menschliche Sorglosigkeit, Gedankenlosigkeit und Dummheit bzw. Vandalismus wurden zahlreiche Geysire und Geysirfelder meist unwiederbringlich zerstört.

Der Ebony-Geysir im Norris-Geysir-Becken (Yellowstone-Nationalpark) wurde 1950 durch Hineinwerfen von Steinen, Holzblöcken und Schutt zerstört. Das gleiche Schicksal erlitt der Minute-Geysir in der gleichen Region, durch den Druck entstand ein anderer Kanal, die Eruptionshöhe jedoch schrumpfte auf 5 % der ursprünglichen.

Der Bau geothermischer Anlagen brachten den Beowawe-Geysir, Spitfire-Geysir, Teakettle-Geysir, Pincushion-Geysir sowie etwa 23 weitere Geysire auf dem Beowawe-Geysir-Feld in Nevada um 1950 zum Versiegen. Die restlichen Geysire in diesem Feld versiegten 1987.

Ebenfalls in Nevada wurden viele Geysire im Steamboat-Springs-Geysir-Feld durch den Bau eines geothermischen Kraftwerks zerstört.

Dem Bau solcher Kraftwerke sind auch zahlreiche Geysire auf Island und Neuseeland zum Opfer gefallen.

[Bearbeiten] Begriffsdefinitionen

Im Zusammenhang mit Geysiren werden oft Begriffe gebraucht, die aus der englischen Sprache übersetzt werden.

[Bearbeiten] Aktiver Geysir

Ein Geysir gilt als aktiv, wenn er innerhalb der letzten zwei Jahre eine Eruption hatte. Diese Definition ist eine willkürliche Vereinbarung und dient der Systematik.

[Bearbeiten] Düsenartiger Geysir (engl.: Cone Type Geyser)

Düsenartige Geysire haben einen schmalen Wasser- und Dampfstrahl. Sie besitzen keinen oder nur einen sehr kleinen Teich, der den Wasserstrahl kaum beeinflusst. Die Mündung des Eruptionskanals muss sich nicht zwangsläufig auf einem Sinterkegel befinden, das ausgeworfene Wasser darf sich jedoch nicht in tieferen Becken über dem Eruptionskanal sammeln. Entspricht Rinehart Modell A oder B. Beispiel: Old Faithful.

[Bearbeiten] Inaktiver Geysir (engl.: dormant Geyser)

Ein Geysir gilt als inaktiv, wenn er innerhalb der letzten zwei Jahre kein eruptives Verhalten zeigte. Diese Definition ist eine willkürliche Vereinbarung und dient der Systematik. Ein inaktiver Geysir kann durchaus wieder aktiv werden (Giant-Geysir, Yellowstone-Nationalpark; Großer Geysir, Island).

[Bearbeiten] Intervall

Es existieren zwei Definitionen für diesen Begriff:

  • Die Zeitspanne zwischen dem Beginn einer Eruption bis zum Beginn der nächsten. Die Abkürzung aus dem Englischen Sprachraum lautet IBE: Interval Between Eruptions.
  • Die Zeitspanne vom Ende einer Eruption bis zum Beginn der nächsten.

Die erste Definition wird vorwiegend im Zusammenhang mit den Geysiren im Yellowstone-Nationalpark gebraucht, die zweite im Zusammenhang mit Geysiren außerhalb des Yellowstone-Nationalparks, zum Beispiel denen in Neuseeland. Die Angabe des Intervalls sollte in diesem Bezug immer erklärt werden.

[Bearbeiten] Springbrunnenartiger Geysir (engl.: Fountain Type Geyser)

Springbrunnenartige Geysire befinden sich in einem Teich und werfen das Wasser nicht in einem scharfen Strahl, sondern in einem Schwall aus. Die Eruption kann in mehrere Ausbrüche aufgeteilt sein (die Definition der GOSA macht dies zur Bedingung). Um den Verlauf einer Eruption zu beschreiben reicht allerdings die Unterscheidung in düsenartig oder springbrunnenartig nicht hin. Hier müssen komplexere Modelle herangezogen werden. Entspricht Rinehart Modell D bis F. Beispiel für einen springbrunnenartigen Geysir: Grand-Geysir.

[Bearbeiten] Falsche Geysire

Eruption des Brubbels
Eruption des Brubbels

Falsche Geysire können genauso beeindruckend sein wie echte Geysire. Ob künstliche Geysire und Kaltwassergeysire ein Naturdenkmal sind, ist umstritten. Die meisten Menschen, die eine Eruption dieser Geysire erlebt haben, sind der Ansicht: Auch falsche Geysire sind schützenswert. Der Begriff „falscher Geysir“ ist auf keinen Fall als Wertung zu betrachten, sondern ordnet einfach in eine Systematik ein.

Es gibt drei Arten falscher Geysire: durch Menschen erzeugte künstliche Geysire, Kaltwassergeysire und kontinuierlich ausbrechende Geysire, im Englischen Perpetual Spouter genannt.

[Bearbeiten] Künstlicher Geysir

Der Geysir Andernach, der höchste Kaltwassergeysir der Welt
Der Geysir Andernach, der höchste Kaltwassergeysir der Welt

Werden in geothermisch aktiven Gebieten von Erdwärme beheizte Höhlen oder Aquifere angebohrt, die eine ausreichende Wasserversorgung besitzen, können sich unter geeigneten Bedingungen Geysire bilden, die ein Eruptionsverhalten wie natürliche Geysire besitzen. Ein bekannter künstlicher Geysir ist beispielsweise der Old Faithful of California in Calistoga, Napa Valley (Intervall ca. 30 Minuten, Eruptionsdauer 3 bis 4 Minuten, Ausbruchshöhe 20 bis 33 m).

[Bearbeiten] Kaltwassergeysir

Bei Kaltwassergeysiren wird der Druck, mit dem das Wasser aus dem Eruptionskanal getrieben wird, nicht durch Wasserdampf, sondern durch im Wasser gelöstes oder in Höhlen austretendes und plötzlich ausperlendes Kohlendioxid erzeugt. Der größte Kaltwassergeysir der Welt, der Geysir Andernach, liegt auf dem Namedyer Werth bei Andernach und ist nach langer Pause im Jahre 2001 neu erbohrt und reaktiviert worden. Ein Vorgänger, der sog."Namedyer Sprudel" war 1903-05 als eine 343 m tiefe Bohrung niedergebracht worden und diente, neben der kommerziellen Nutzung des Kohlendioxids, bis in die 50er Jahre des vorigen Jahrhunderts, bereits als touristische Attraktion. Nebenbei ist der Geysir "Großer Sprudel" im Kurpark in Bad Neuenahr-Ahrweiler zu erwähnen, wodurch die Stadt erst zum Badeort wurde.

[Bearbeiten] Kontinuierlich ausbrechender Geysir (englisch Perpetual Spouter)

Ein kontinuierlich ausbrechender Geysir ist kein Geysir im eigentlichen Sinn (ein Geysir zeichnet sich ja durch sein in Intervallen auftretendes eruptives Verhalten aus) sondern eine Thermalquelle, die ähnlich wie ein Geysir ständig heißes Wasser oder heißes Wasser und Wasserdampf ausstößt. Porkchop-Geysir im Yellowstone-Nationalpark war vor seiner Explosion solch ein „Perpetual Spouter“.

[Bearbeiten] Geysire als Biotop

In Geysiren, die man früher wegen der Hitze für steril hielt, haben sich tatsächlich Bakterien und vor allen Archaeen gefunden, die bis über 100 Grad Wassertemperatur aushalten. Siehe näheres bei Thermophilie.

[Bearbeiten] Sonstiges

[Bearbeiten] Extreme Geysire

Steamboat-Geysir
Steamboat-Geysir

Der Geysir mit den höchsten Eruptionen der Erde ist der Steamboat-Geysir im Yellowstone-Nationalpark. Die höchste Wurfhöhe der Fontäne, die je beobachtet wurde, betrug 130 m. Eine große Eruption ist beim Steamboat selten, aber dann erreicht er Höhen von mindestens 76 m.

Der Geysir mit den höchsten Ausbrüchen in der Geschichte war der Waimangu-Geysir in Neuseeland mit einer Fontäne bis 460 m Höhe. Der Geysir existierte nur von 1900 bis 1904 und wurde durch einen Erdrutsch verschüttet.

Grot Yubileinyi im Tal Dolina Geiserow auf der Halbinsel Kamtschatka wirft hoch und weit. Die Fontäne wird schräg ausgeworfen und erreicht eine Höhe von ca. 33 m und eine Weite von bis zu 76 m.

Die regelmäßigsten Intervalle wurden im Yellowstone-Nationalpark über die letzten Jahre am Riverside-Geysir gemessen und wenn der Castle-Geysir nicht gerade in kleinen Eruptionen ausbricht, übertrifft er Riverside sogar an Regelmäßigkeit.

Außer Konkurrenz spielen die künstlichen Geysire und die Kaltwassergeysire. Soda Springs in Idaho mogelt mit Zeitschaltuhr und Ventil. Ein Muster an Regelmäßigkeit des Eruptionsintervalls ist der Kaltwassergeysir Brubbel in Wallenborn in der Eifel, der etwa alle 35 Minuten ausbricht.

Auf dem Neptunmond Triton gibt es Stickstoffgeysire, die bis zu 8 km Höhe erreichen.

[Bearbeiten] Siehe auch

Weitere postvulkanische oder mit Thermalquellen in Zusammenhang stehende Erscheinungen:

[Bearbeiten] Literatur

  • John Sargent Rinehart: Geysers and Geothermal Energy. Springer Verlag, Berlin 1980, ISBN 0387904891
  • T. Scott Bryan: The Geysers of Yellowstone, Third Edition. University Press of Colorado, Colorado 1995, ISBN 087081365X
  • Carl Schreier: A field guide to Yellowstone's geysers, hot springs and fumaroles. Homestead Pub, Moose Wyo ²2003, ISBN 0943972094

[Bearbeiten] Weblinks

Wiktionary
 Wiktionary: Geysir – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik
Commons
 Commons: Geysir – Bilder, Videos und Audiodateien

deutschsprachig:

englischsprachig:

russischsprachig

Dieser Artikel wurde in die Liste der exzellenten Artikel aufgenommen.
Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com