See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Besselsche Differentialgleichung – Wikipedia

Besselsche Differentialgleichung

aus Wikipedia, der freien Enzyklopädie

Die besselsche Differentialgleichung


x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0 \,
.

ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Dabei ist n meistens eine ganze Zahl.

Sie ist benannt nach Friedrich Wilhelm Bessel.

Inhaltsverzeichnis

[Bearbeiten] Bessel-Funktionen

[Bearbeiten] Allgemein

Die Bessel-Funktionen J0, J1
Die Bessel-Funktionen J0, J1
Die Bessel-Funktionen Y0, Y1
Die Bessel-Funktionen Y0, Y1

Die Lösungen der besselschen Differentialgleichung heißen Bessel-Funktionen. Sie spielen eine wichtige Rolle in der Physik, da die besselsche Differentialgleichung den radialen Anteil der Laplace-Gleichung bei zylindrischer Symmetrie darstellt. Man trifft unter anderem bei der Untersuchung von Eigenschwingungen einer kreisförmigen Membran oder Orgelpfeife, Ausbreitung von Wasserwellen in runden Behältern, Wärmeleitung in Stäben, der Analyse des Frequenzspektrums von frequenzmodulierten Signalen, stationären Zuständen von Kastenpotentialen und der Intensität von Lichtbeugung an kreisförmigen Löchern auf die Bessel-Funktionen. Man zählt die Bessel-Funktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen.

Die besselsche Differentialgleichung besitzt zwei linear unabhängige Lösungen. Für nicht-ganzzahlige n sind Jn und J n linear unabhängige Lösungen. Für ganzzahlige n ist neben der Bessel-Funktion erster Gattung Jn (auch einfach Bessel-Funktion genannt) die Bessel-Funktion zweiter Gattung Yn (auch Weber-Funktion oder Neumann-Funktion genannt) die zweite, linear unabhängige Lösung.

Die Darstellungen der Bessel-Funktionen lauten


J_n(x) = \sum_{r=0}^\infty \frac{(-1)^r (\frac{x}{2})^{2r+n}}{\Gamma(n+r+1)r!} \,
, wobei Γ(x) die Gammafunktion ist, sowie

Y_n(x) := \lim_{p\rightarrow n} \frac{J_p(x)\cos p \pi - J_{-p}(x)}{\sin p \pi} \,
.

Die Bessel-Funktion 2. Gattung hat im Ursprung eine logarithmische Singularität, weshalb sie sich nicht durch eine Potenzreihe darstellen lässt. Durch Ausführung des Grenzüberganges mit der Regel von L’Hospital ergibt sich:


Y_n(x) = \frac2{\pi}\left(\gamma+\log\frac{x}2\right)J_n(x)
 - \frac1{\pi}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\frac{x}2\right)^{2k-n}
 - \frac1{\pi}\sum_{k=0}^{\infty}(-1)^k\frac{H_k+H_{k+n}}{k!(n+k)!}\left(\frac{x}2\right)^{2k+n}
.

Hierbei ist γ die Eulersche Konstante und Hn die harmonische Reihe.

[Bearbeiten] Weitere Eigenschaften

\frac{n}{x} J_n = \frac{1}{2}(J_{n-1} + J_{n+1}) \,,

J'_n = \frac{1}{2}(J_{n-1} - J_{n+1}) \,
.
Diese Beziehungen gelten auch für die Bessel-Funktion 2. Gattung.
  • Für ganzzahlige n gilt weiterhin:
J_{-n}(x) = (-1)^n J_n(x) = J_n(-x)\,
Die Bessel-Funktion kann in Abhängigkeit zur hypergeometrischen Funktion ausgedrückt werden.
J_n(z)=\frac{(z/2)^n}{(n+1)!}  \;_0F_1 (n+1; -z^2/4).
Dieser Ausdruck hängt mit der Entwicklung der Bessel-Funktion in Abhängigkeit zur Bessel-Clifford-Funktion zusammen.
  • Für alle x \in \R gilt  \sum_{n=-\infty}^\infty J_n(x)^2 = 1 .
  • Für alle n \in \N gilt  \left(-\frac{1}{x}\frac{{\rm d}}{{\rm d}x}\right)^n J_0(x) = \frac{J_n(x)}{x^n} .

[Bearbeiten] Modifizierte Bessel-Funktionen

Tritt eine Bessel-Funktion nur mit rein imaginären Zahlen auf, so spricht man von modifizierten Bessel-Funktionen.


I_n(x)= i^{-n} J_n(ix)=\sum_{r=0}^\infty \frac{(\frac{x}{2})^{2r+n}}{\Gamma(r+n+1)r!} \,

ist die modifizierte Bessel-Funktion n-ter Ordnung. Sie löst die Differentialgleichung


x^2 y'' + x y' - (x^2 + n^2) y = 0 \,
.

Eine zweite Lösung für diese Differentialgleichung ist


K_n(x)=\lim_{p\rightarrow n}\frac{\pi}{2}\frac{I_{-p}(x)-I_p(x)}{\sin (p x)} \,
,

die auch als MacDonald-Funktion bekannt ist.

[Bearbeiten] Literatur

Einleitung in die Theorie der Bessel'schen Funktionen. Erster Band Zweiter Band (K. J. Wyss, Bern, 1900)

[Bearbeiten] Weblinks


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -