Zeta dağılımı
Vikipedi, özgür ansiklopedi
Olasılık kütle fonksiyonu log-log ölcekli olarak Zeta OKF. (Bu fonksiyon sadece k'nin tamsayıları icin tanımlanmaktadır; noktaları bağlayan çizgiler görüs kolaylıgı sağlamak icin verilmistir; süreklilik ifade etmezler.) |
|
Yığmalı dağılım fonksiyonu |
|
Parametreler | |
---|---|
Destek | |
Olasılık kütle fonksiyonu (OYF) | |
Yığmalı dağılım fonksiyonu (YDF) | |
Ortalama | |
Medyan | |
Mod | |
Varyans | |
Çarpıklık | |
Fazladan basıklık | |
Entropi | |
Moment üreten fonksiyon (mf) | |
Karakteristik fonksiyon |
Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir aralıklı olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tamsayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:
Burada ζ(s) Riemann zeta fonksiyonu olur (ama bu fonksiyon s = 1 tanımlanamaz.).
Sonsuz değerde N için zeta dağılımı Zipf dağılımına eşit değerdedir. O zaman Zipf dağılımı ve zeta dağılım aynı anlamı verdikleri için birbiriyle kavram farkı vermeden değiştirilebilip kullanılırlar.
Konu başlıkları[gizle] |
[deÄŸiÅŸtir] Momentler
Genel olarak, ninci ham moment Xnin beklenen değeri olarak şöyle tanımlanır:
Bu ifadenin sağ tarafında bulunan seri bir Rieman zeta funksiyonu temsil eden seridir. Ancak bu serinin yakınsaması sadece s-n değeri birden büyük ise mümkün olmaktadır. Böylece zeta dağılımı için moment
olur. Hatırlamak gerekir ki iki zeta fonksiyonunun oranı, n ≥ s − 1 ifadesi için bile, çok kesin olarak tanımlanmıştır. Ama bu yine de, momentlerin seri için tanımlandığı ve bu nedenle büyük bir n değeri için tanımlanamadığı gerçeğini değiştirmez'
[değiştir] Moment üreten fonksiyon
Genel olarak, moment üreten fonksiyon şöyle tanımlanır:
Bu seri gerçekte yalnızca bir polilogaritma'nin tanımlanmasıdır ve et < 1 için geçerlidir ve bu halde
Bu fonksiyonun bir Taylor serisi yöntemi kullanılarak genişletilmesi mutlaka bir dağılım için momentleri vermez. Genellikle, moment üreten fonksiyonlara dayanarak elde edilen momentleri kullanan Taylor serileri şu ifedeyi ortaya çıkartır:
Bu ifade, büyük n değerleri icin momentlerin sonsuz olduğu gerçeği göz önüne getirilirse, besbellidir ki herhangi bir snin sonsuz olmayan değeri icin kesin olarak tanımlanamaz. Momentler yerine analitik olarak sürekli terimleri kullanırsak, polilogaritmayi temsil eden seriden
için şu ifadeyi elde ederiz:
değeri şöyle verilir
burada Hs bir harmonik sayı olur.
[deÄŸiÅŸtir] s=1 hali
Harmonik seri olduğu için ζ(1) sonsuz değerdedir ve bu nedenle s=1 olma hali anlamlı değildir. Ama eğer A yoğunluğu bulunan herhangi bir pozitif tamsayılar seti ise yani
var olmakta ise ve burada N(A, n) A seti içinde bulunan ve n değerine eşit veya bu değerden daha küçük set elemanlarının sayısı ise, şu ifade
bu yoÄŸunluÄŸa eÅŸittir.
Bazı hallerde A için yoğunluk yok olması nedeniyle verilen ikinci sınır geçerli olur. Örnegin, eğer A birinci tamsayısı ;d olan bütün pozitif tamsayıların bir seti ise, A için bir yoğunluk bulunmaz. Ancak bu halde bile yukarıda verilen ikinci sınırlama gecerli olur ve bu sınırlama şu ifadeye oranlıdır:
Buna benzer yöntem aynen Benford'un savının geliştirilmesi için de kullanılır.
[değiştir] İçsel kaynaklar
Diğer güç-savı dağılımları şunlardır:
- Benford'un savı
- Cauchy dağılımı
- Lévy dağılımı
- Lévy çarpık alpha-durağan dağılımı
- Pareto dağılımı
- Zipf'in savı
- Zipf-Mandelbrot savı
[deÄŸiÅŸtir] Kaynak
[değiştir] Dışsal bağlantılar
Some remarks on the Riemann zeta distribution by Allan Gut. Gut'un “Reieman zeta dağılımı†olarak andıgı X bir rassal değisken olarak −log X, ifadesinin dağılımıdır. Bu kavram genellikle ve bu maddede zeta dağılımı olarak anılmaktadır.
Tek değişirli | Çok değişirli | |
---|---|---|
Aralıklı: | Benford ·
Bernoulli · Binom · Boltzmann · Kategorik · Bileşik Poisson · Aralıklı faz tipi · Bozulmuş Gauss-Kuzmin · Geometrik · Hipergeometrik · Logaritmalı · Negatif binom · Parabolik fraktal · Poisson · Rademacher · Skellam · Aralıklı tekdüze · Yule-Simon · Zeta · Zipf · Zipf-Mandelbrot |
Ewens ·
Multinom · Çok değişirli Polya |
Sürekli: | Beta ·
Beta prime · Caucy · Ki-kare · Dirac delta fonksiyonu · Cox tipi · Erlang · Üstel · Üstel güç · F · Fermi-Dirac · Fisher'in z · Fisher-Tippett · Gamma · Genelleştirilmiş uçsal değer · Genelleştirilmiş hiperbolik · Genelleştirilmiş ters Gauss-tipi · Yarı-logistik · Hotelling'in T-kare · Hiperbolik sekant · Hiper-üstel · Hipo-üstel · Ters ki-kare · Ölçeklenmiş ters ki-kare · Ters Gauss-tipi · Ters gamma · Ölçeklenmiş ters gamma · Kumaraswami · Landau · Laplace · Lévy · Lévy çarpık alfa-durağan · logistik · Log-normal · Maxwell-Boltzmann · Maxwell hızı · Nakagami · Normal (Gauss tipi) · Normal-gamma · Normal ters Gauss-tipi · Pareto · Pearson · Faz-tipi · Kutupsal · Yükseltilmiş kosinus · Rayleigh · Relativistik Breit-Wigner · Rice · Rosin–Rammler · Kaydırılmış Gompertz · Student'in t · sürekli tekdüze Üçgensel · Kesilmiş normal · Tweedie · 1.tip Gumbel · 2.tip Gumbel · Varyans-Gamma · Voigt · Von Mises · Weibull · Wigner yarımdaire · Wilks'in lambda |
Dirichlet ·
Genelleştirilmiş Dirichlet · Ters-Wishart · Kent · Matris normal · Çokdeğişirli normal · Çokdeğişirli Student · Von Mises-Fisher · Wigner benzeri · Wishart |
Çeşitli: |
Çiftmodlu · Kantor · Koşullu · Denge · Üstel ailesi · Sonsuz bölünebilirlilik (olasılık) · Konum-ölçeği ailesi · Marjinal · Maksimum entropi · Sonrasal · Öncel · Olasılık-benzeri · Örneklem · Singüler · Tekmodlu |