Weibull dağılımı
Vikipedi, özgür ansiklopedi
Olasılık yoğunluk fonksiyonu Resim:Weibull PDF 2.PNG |
|
Yığmalı dağılım fonksiyonu Resim:Weibull CDF 2.PNG |
|
Parametreler | olcek (reel) sekil (reel) |
---|---|
Destek | |
Olasılık yoğunluk fonksiyonu (OYF) | |
Yığmalı dağılım fonksiyonu (YDF) | |
Ortalama | |
Medyan | |
Mod | if k > 1 |
Varyans | |
Çarpıklık | |
Fazladan basıklık | (metine bakın) |
Entropi | |
Moment üreten fonksiyon (mf) | bakin Weibull |
Karakteristik fonksiyon |
Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı (Waloodi Weibull anısına isimlendirilmiş) [1] ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:
Burada ve x < 0 için f(x; k, λ) = 0. k > 0 şekil parametresi ve λ > 0 ölçek parametresi olurlar.
Weibull dağılımı için yığmalı olasılık fonksiyonu bir gerilmiş üstel (stretched) fonksiyondur.
Yaşama, hayatta kalım ve yetmezlikle yıkım süreçlerini inceleyen verilerin analizi alanında Weibull dağılımı çok elastik olup kolayca değiştirilebildiği için çok kullanılmaktadır. Değişik parametre değerleri kullanılarak normal dağılım, üstel dağılım gibi çok popüler diğer istatistiksel dağılımların davranışların Weibull dağılımı kullanarak aynen taklid etme imkanı bulunmaktadır.
Eğer k = 3.4 ise, Weibull dağılımı normal dağılımına benzerlik gösterir. Eğer k = 1 ise o zaman Weibull dağılımı üstel dağılımına dönüşür.
Konu başlıkları |
[değiştir] Özellikler
Weibull dağılımı için ninci ham momenti şu ifadeyle verilmiştir:
- €
Burada Γ bir Gamma fonksiyonu olur.
Weibull rassal değişkeni için beklenen değer ve standart sapma şöyle verilir:
ve
Çarpıklık şöyle verilir:
Fazla basıklık ifadesi şudur:
Burada Γi = Γ(1 + i / k). Fazla basıklık ifadesi şöyle de yazılabilir:
İstatistik kaynakları çok kere biraz değişik olan genelleştirilmiş 3-parametreli Weibull dağılımı bulunduğunu bildirmektedirler. Bu genelleştirilmis Weibull dağılımı için olasılık dağılım fonksiyonu şudur:
Burada ve f(x; k, λ, θ) = 0 eğer x < θ; k > 0 şekil parametresi, λ > 0 ölçek parametresi ve θ dağılım için konum parametresisir. Limitte θ=0, olduğu zaman bu ifade 2-parametreli değişime dönüşür.
2-parametreli Weibull dağılımı için yığmalı dağılım fonksiyonu şöyle verilmiştir:
eğer x ≥ 0, ve F(x; k; λ) = 0 eğer x < 0.
3-parametreli Weibull dağılımı için ise yığmalı dağılım fonksiyonu şudur:
Burada x ≥ θ, ve F(x; k, λ, θ) = 0f eger x < θ.
Kritik yetmezlik hızı h (veya tehlike hızı) şöyle verilmiştir:
[değiştir] Weibull dağılımı gösteren rassal değişir üretilmesi
(0, 1) aralığında bulunan bir tekdüze dağılımından elde edilmiş bir rassal değişir olarak U ele alınsın. O zaman şu
parametreleri k ve λ olan bir Weibull dağılımı gösterir. Bu sonuç yığmalı dağılım fonksiyonunun şekilden hemen elde edilir. Ancak (0,1) aralığından rassal değişkenler üretilmekte iken ele geçirilmesi çok az olasılıklı olan 0 değeri bir şans eseri ele geçerse (bu değerin doğal logaritması sonsuz olacağı için) bu çekilimin bir kenara bırakılması ve yeni bir tane daha rassal sayı elde edilmesi gerekir.
[değiştir] İlişkili dağılımlar
- Eger
- X˜Weibull(k = 1,λ − 1)
ise,
- X˜Exponential(λ)
ifadesi bir ustel dagilim olur.
- Eger
ise
- X˜Rayleigh(β)
bir Rayleigh dagilimi olur.
- Eger
- X˜Uniform(0,1)
ise
bir Weibull dagılımı olur.
- Ters Weibull dağılımı için olasılık dağılım fonksiyonu
olur.
- Genellestirilmis uçsal değer dağılımı maddesine de bakınız.
[değiştir] Kullanış alanları
Weibull dağılımı pratikte çok kere normal dağılım yerine kullanılmaktadır. Buna neden Weibull değisebiliri değerlerinin kolay matematik işlemlerle ortaya çıkan ters alma usulu ile üretilebilmekte ve buna karşılık normal değişebilir değerleri rettmek icin tipik olarak daha karmaşık işlemler gerektiren (her normal değer için iki tane tekdüze dağılım değişebilir değeri isteyen) Box-Muller yontemi ile elde etmek gerekmektedir.
Endüstriyel mühendislik dalında fabrikasyon ve mal teslim zamanlarını temsil etmek için modellemelerde Weibull dağılımı kullanılmaktadır. Ayni bilim ve teknoloji dalında [[ mühendisliği ve failure analizi için istatistiksel modellere baz olamaktadir.
Weibull dağılımı Lucasl deger teorisi ve meteorojide hava tahmin modellemesinde önemli rol oynamaktadir.
Radar sistemlerinin modelleme alanında
Weibull dağılımı çok popüler olarak rüzgar hızı dağılımını tanımlamak icin kullanılır çünkü doğasal pratik rüzgar hızı çizelgelerine teorik Weibull şekli çok uygun olmaktadır.
[değiştir] Referanslar
- ^ Weibull, W. (1951) "A statistical distribution function of wide applicability (Genis kullanim alani olan bir istatistiksel dagilim)" J. Appl. Mech.-Trans. ASME 18(3), 293-297
[değiştir] Kaynak
[değiştir] Dışsal bağlantılar
- Weibull dağılımı (örnekler, özellikler ve hesaplayıcılar ektedir).
- Weibull grafiği.
- Özel Weibull tipi grafik kağıtıdır.
- Mathpages - Weibull Analizi
- Weibull Analizi için Excel kullanılması
- Waloddi Weibull'un biografisi
- SOCR Bu eğitim kaynağı Weibull dağılımı için etkileşimli gösterim.
Tek değişirli | Çok değişirli | |
---|---|---|
Aralıklı: | Benford ·
Bernoulli · Binom · Boltzmann · Kategorik · Bileşik Poisson · Aralıklı faz tipi · Bozulmuş Gauss-Kuzmin · Geometrik · Hipergeometrik · Logaritmalı · Negatif binom · Parabolik fraktal · Poisson · Rademacher · Skellam · Aralıklı tekdüze · Yule-Simon · Zeta · Zipf · Zipf-Mandelbrot |
Ewens ·
Multinom · Çok değişirli Polya |
Sürekli: | Beta ·
Beta prime · Caucy · Ki-kare · Dirac delta fonksiyonu · Cox tipi · Erlang · Üstel · Üstel güç · F · Fermi-Dirac · Fisher'in z · Fisher-Tippett · Gamma · Genelleştirilmiş uçsal değer · Genelleştirilmiş hiperbolik · Genelleştirilmiş ters Gauss-tipi · Yarı-logistik · Hotelling'in T-kare · Hiperbolik sekant · Hiper-üstel · Hipo-üstel · Ters ki-kare · Ölçeklenmiş ters ki-kare · Ters Gauss-tipi · Ters gamma · Ölçeklenmiş ters gamma · Kumaraswami · Landau · Laplace · Lévy · Lévy çarpık alfa-durağan · logistik · Log-normal · Maxwell-Boltzmann · Maxwell hızı · Nakagami · Normal (Gauss tipi) · Normal-gamma · Normal ters Gauss-tipi · Pareto · Pearson · Faz-tipi · Kutupsal · Yükseltilmiş kosinus · Rayleigh · Relativistik Breit-Wigner · Rice · Rosin–Rammler · Kaydırılmış Gompertz · Student'in t · sürekli tekdüze Üçgensel · Kesilmiş normal · Tweedie · 1.tip Gumbel · 2.tip Gumbel · Varyans-Gamma · Voigt · Von Mises · Weibull · Wigner yarımdaire · Wilks'in lambda |
Dirichlet ·
Genelleştirilmiş Dirichlet · Ters-Wishart · Kent · Matris normal · Çokdeğişirli normal · Çokdeğişirli Student · Von Mises-Fisher · Wigner benzeri · Wishart |
Çeşitli: |
Çiftmodlu · Kantor · Koşullu · Denge · Üstel ailesi · Sonsuz bölünebilirlilik (olasılık) · Konum-ölçeği ailesi · Marjinal · Maksimum entropi · Sonrasal · Öncel · Olasılık-benzeri · Örneklem · Singüler · Tekmodlu |