ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Alkének - Wikipédia

Alkének

A Wikipédiából, a szabad enciklopédiából.

A legegyszerűbb alkén, az etén (vagy etilén)
A legegyszerűbb alkén, az etén (vagy etilén)

Az alkének olyan telítetlen szénhidrogének, amelyekben egy vagy több szén-szén kétszeres kötés található. Régies olefin nevük onnan származik, hogy a kisebb rendszámú alkének halogéneke addíciójával olajszerű termékké alakultak. A legegyzerűbb alkén az etén. A molekulában lévő szénatomok közti kettős kötések száma szerint léteznek mono-, di-, triolefinek. Az egy kettős kötést tartalmazó alkének homológ sort alkotnak. Általános képletük: CnH2n. Léteznek gyűrűs olefinek is, ezek neve cikloalkán vagy cikloolefin.

Tartalomjegyzék

[szerkesztés] Csoportosításuk

Az alapján, hogy az akénekben hány kettős kötést tartalmaznak, a monoolefin, diolefin, triolefin, stb. csoportokra oszthatók. A kettő vagy több kettős kötést tartalmazó alkének neve: polién vagy pliolefin. A diolefinek, a két kettős kötést tartalamzó alkének (diolefinek, diének)az alapján csoportosíthatók, hogy a kettős közések egymáshoz képest hogyan helyezkednek el. A kumulált diénekben a két kettős kötés közvetlenül egymás mellett található a konjugált diénekben a kettős kötések között egy, az izolált diénekben kettő vagy kettőnél több egyszeres kötés található.

[szerkesztés] Izoméria

Az alkánokhoz hasonlóan az alkéneknél is fellép a szerkezeti vagy konstitúciós izoméria. Több szerkezeti izomerjük lehetséges, mint az alkánoknak, mert olyan izomerek is léteznek, amelyekben a kettős kötés helyében van különbség. Például háromféle négy szénatomos monoolefin létezik, a 2-metilpropén, a but-1-én (vagy más néven 1-butén) és a but-2-én (vagy 2-butén).

[szerkesztés] Geometriai izoméria

A 2-butén izomerjei: a cisz-2-butén és a transz-2-butén
A 2-butén izomerjei: a cisz-2-butén és a transz-2-butén

Az alkénekben nem lehetséges rotáció (elfordulás) a kettős kötés körül. Ezért az etilén 1,2-diszubsztituált származékainak (olyan származékainak, amelyben a mindkét szénatomon helyettesítve van 1-1 hidrogén valamilyen csoporttal) tekinthető alkéneknél fellép a geometriai vagy cisz-transz izoméria. A cisz-transz izoméria a sztereoizoméria egyik fajtája, azaz az izomerek között csak az atomok térbeli ehelyezkedésében van különbség. A 2-buténnek például két sztereoizomerje létezik, ezek neve cisz-2-butén és transz-2-butén. Az előbbiben a két metilcsoport a kettős kötés azonos, az utóbbiban az ellentétes oldalán található. A kétféle izomert szokás Z, illetve E betűkkel is jelölni. A cisz-transz izomerek közül mindig a cisz-változatnak nagyobb az energiatartalma, a transz-izomer a stabilabb.

[szerkesztés] Fizikai tulajdonságaik

A monoolefinek homológ sorának első négy tagja szobahőmérsékleten gáz halmazállapotú, az 5 és a 15 közti szénatomszámúak folyadékok, az ennél több szénatomot tartalmazók szilárdak. A konjugált diének közül a butadién gáz (forráspontja -4,4 °C), az izoprén és a gyűrűs ciklopentadién cseppfolyós halmazállapotú. Apoláris vegyületek, vízben alig, szerves oldószerekben jól oldódnak.

[szerkesztés] Kémiai tulajdonságaik

Az alkének nagyon reakcióképes vegyületek, szemben a kis reakciókészségű alkánokkal. Amíg általában a telített szénhidrogénekre a szubsztitúciós reakciók a jellemzők, addig az alkéneknél az addíciós reakciók a meghatározók.

[szerkesztés] Addíciós reakciók

A nyílt láncú alkének hidrogénnel alkánokká, a gyűrűs cikloolefinek cikloalkánokká telíthetők. A hidrogénaddíció nikkel vagy platinakatalizátor jelenlétben játszódik le. A nyílt láncú olefinek telítésének reakcióegyenlete:

\mathrm{R{-}CH{=}CH{-}R' + H_2 \rightarrow R{-}CH_2{-}CH_2{-}R'}

Az alkének halogénekkel nagyon könnyen addíciós reakcióba lépnek. A reakciókészség Cl < Br < I irányban nő. Az addíciót indifferens, a reakció szempontjából közömbös oldószerben végzik. A brómaddíció egyrészt az alkének kétszeres kötésének kimutatására használható, az addíció során a bróm színe eltűnik. Másrészt átmenetileg megvédhető vele a kettős kötés, mert a két brómatom cink segítségével könnyen eltávolítható (elimináció). A brómaddíció egyenlete:

\mathrm{R{-}CH{=}CH{-}R' + Br_2 \rightarrow R{-}CHBr{-}CHBr{-}R'}

Az alkének könnyen addícionálnak hidrogén-halogenideket is. Az addíció során alkil-halogenidek keletkeznek. A hidrogén-halogenidek addíciójára általában érvényes a Markovnyikov-szabály: az alkén úgy addícionálja a hidrogén-halogenidet, hogy a hidrogénje a kettős kötésnek ahhoz a szénatomjához kötődik, amelyhez eleve is több hidrogén kapcsolódott, a halogénatom pedig a másik szénatomhoz kapcsolódik. Például a propilén hidrogén-jodid addíciója pédául 2-jód-propánhoz vezet.

\mathrm{CH_3{-}CH{=}CH_2 + HI \rightarrow CH_3{-}CHI{-}CH_3}

A hidrogén-bromid addíciója oxidálószerek jelenlétében azonban nem a Markovnyikov-szabály szerint történik. (A hidrogén arra a szénatomra lép be, ahol eredetileg kevesebb hidrogén volt). A reakciókészég hidrogén-halogenidek esetén HCl < HBr < HI irányban nő.

Az alkének kénsavaddíciója is a hidrogén-halogenid addícióhoz hasonló módon játszódik le. A reakcióban alkilhidrogénszulfátok, savanyú kénsavészter jellegű vegyületek képződnek. A Markovnyikov-szabály itt is érvényes, például propilénből izoporpil-hidrogénszulfát keletkezik. A reakció gyakorlati jelentősége nagy, mert a keletkezett észterek alkoholokká hidrolizálhatók, és így alkénekből alkoholok állíthatók elő.

\mathrm{CH_3{-}CH{=}CH_2 + H_2SO_4 \rightarrow CH_3{-}CH(OSO_2OH){-}CH_3}

Az alkének hipoklórossav-addíciójánál a Markovnyikov-szabály úgy érvényesül, hogy a halogén kapcsolódik ahhoz a szénatomhoz, amelyen több hidrogén van. A keletkező klórhidrinek gyakorlati jelentősége nagy.

\mathrm{R{-}CH{=}CH_2 + HOCl \rightarrow R{-}CHOH{-}CH_2Cl}

[szerkesztés] Polimerizáció

A polimerizáció vagy poliaddíció az alkénk fontos és nagy gyakorlati jelentőségű reakciója. Polimerizáció során nagyon sok alkénmolekula kapcsolódik össze óriásmolekulává. A polimerizáció is addíciós folymatnak tekinthető. A polimeritáció savakkal vagy peroxidokkal katalizálható, a katalizátor a reakció mechamizmusát is befolyásolja. Az alkének és az alkénszármazékok polimerizációs termékei fontos műanyagok, elilén polimerizációjakor polietilén, propilénből polipropilén, sztirolból polisztirol, vinil-kloridból PVC, izoprénből kaucsuk, kloroprénből klórkaucsuk keletkezik. A polimerizáció általános reakcióegyenlete:

\mathrm{n \ CH_2{=}CH{-}R \rightarrow [-CH_2{-}CHR-]_n}

[szerkesztés] Oxidációs reakciók

Az alkének telítetlen kötése érzékeny oxidációval szamben. Enyhébb oxidáció során (például hidrogén-peroxiddal oxidálva vagy kálium-permanganát hatására lúgos közegben) az alkének először epoxidokká oxidálódnak. Az epoxidok háromtagú gyűrűs heterociklusos vegyületek, a gyűrűjükben oxigénatom található. Gyűrűs éteteknek tekinthetők, igen reakcióképes vegyületek. Az oxidációkor keletkező epxidok víz hatására könnyen kétértékű alkoholokká hidrolizálnak. A legegyszerűbb alkén, az etilén oxidációjakor például először etilénoxid keletkezik, majd ez hidrolizál etilénglikollá.

Az etilén enyhe oxidációja
Az etilén enyhe oxidációja

Az alkének kálium-permanganáttal lúgos közegben végzett oxidációja a telítetlen kötés kimutatására használható, mert a reakció a permanganát elszíntelenedésével jár (Baeyer-próba).

Az alkének erőtejes oxidációjakor kettős kötésük felhasad, az eredatileg a kétszeres kötést alkotó szénatomok karboxilcsoporttá oxidálódnak. A reakcióban karbonsavak keletkeznek, 1-buténből egy molekula hangyasav és egy molekula propionsav, 2-buténből két molekula ecetsav.

Oxidációs reakció az ozonidos lebontás is. Az alkének ózon hatására gyűrűs ozonidok keletkeznek, ez a reakció is a kétszeres kötés elszakadásával jár. A keletkező ozonidok instabilak, robbanékonyak, víz hatására oxovegyületekre (aldehidekre és/vagy ketonokra) és hidrogén-peroxidra hidrolizálnak. Az ozonidos lebontás a kettős kötés helyének meghatározására használható. Izobutilén (2-metilpropén) lebontásakor például aceton és formaldehid keletkezik.

[szerkesztés] Szubsztitúciós reakciók

Az alkének szubsztitúciós reakciói kevésbé jelentősek, mint az addíciós reakciók, egyedül a halogénezés jelentős. Az allilhelyzetű szénatomhoz (A kétszeres kötéshez közvetlenül kapcsolódó telített szénatomhoz) kapcsolódó hidrogénatomok bizonyos módszerekkel halogénre cserélhetők. Az allilhelyzetű brómozás N-bróm-szukcinimiddel végezhező el, az alkén kloroformos oldatának forralásával (Ziegler-féle brómozás). A propén 500 °C-on klórozható az allilhelyzetű szénatomján, allilklorid keletkezik. Ez egy gyökös mechanizmus szerint lejátszódó szubsztitúciós reakció.

\mathrm{CH_2{=}CH{-}CH_3 + Cl_2 \rightarrow CH_2{=}CH{-}CH_2{-}Cl + HCl}

[szerkesztés] Előállításuk

Az akkének telített vegyületekből eliminációval állíthatók elő. Az elimináció során a telített vegyület két szomszédos atomjáról egy-egy atom vagy atomcsoport távozik.

Alkének nyerhetők telített szénhidrogénekből dehidrogénezéssel. Iparilag a fontosabb szénhidrogéneket a kőolaj krakkoló lepárlásával gyártják. A krakkolást magas hőmérsékleten (800-900 °C) végzik, a krakkolás dehidrogéneződéssel jár. A keletkző gázelegy (krakkgázok) fontos alkéneket, etiléntnt, propilént és butiléneket tartalmaz.

A vicinális dihalogénezett szénhidrogénekből (olyan szénhidrogénekből, amelynek két szomszédos szénatomjához is halogénatom kapcsolódik) fémek, pédául cink vagy réz segítségével a két halogénatom eltávolítható. A halogénatomok helyén kettős kötés jön létre. Az eliminációt nátrium-jodid katalizálja. (A nátrium-jodid hatására a vegyületből dijódszármazék keletkezik, majd ez lép reakcióba a fémmel.) A brómatomok eliminációja cinkkel a következő egyenlet szerint játszódik le:

\mathrm{R{-}CHBr{-}CHBr{-}R' + Zn \rightarrow R{-}CH{=}CH{-}R' + ZnBr_2}

Alkoholokból vízelvonással (például kénsav hatására) szintén alkének keletkeznek.

\mathrm{R{-}CHOH{-}CH_2{-}R' \rightarrow R{-}CH{=}CH{-}R' + H_2O}

Halogénezett szénhidrogénekből tömény lúg hatására lejátszódó elimináció során szintén kétszeres kötést tartalamzó vegyületek képződnek.

\mathrm{R{-}CHI{-}CH_2{-}R' + KOH \rightarrow R{-}CH{=}CH{-}R' + KI + H_2O}

[szerkesztés] Források

  • Bot György: A szerves kémia alapjai
  • Furka Árpád: Szerves kémia
  • Kovács Kálmán, Halmos Miklós: A szerves kémia alapjai
  • Bruckner Győző: Szerves kémia, I/1-es kötet.

[szerkesztés] Lásd még


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -