ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Goldbach-sejtés - Wikipédia

Goldbach-sejtés

A Wikipédiából, a szabad enciklopédiából.

A Goldbach-sejtés azt mondja ki, hogy

(I.) Minden 2-nél nagyobb páros szám előáll két prímszám összegeként.

(II.) Minden 5-nél nagyobb páratlan szám előáll három prímszám összegeként.

A sejtés egyike azoknak a szélesebb körben ismert matematikai állításoknak, melyekről a szakemberek túlnyomó többsége azt gondolja, hogy minden valószínűség szerint igaz, ugyanakkor a mai napig nem rendelkezünk bizonyítással a helyességüket illetően. Christian Goldbach 1742-ben egy Euler-hez írott levelében fogalmazta meg megfigyelését, hogy minden 5-nél nagyobb páratlan szám három prímszám összege. Euler válaszul rámutatott, hogy ez ekvivalens a fenti (I.) állítással.

A több mint 250 éves problémát illetően ma is csak részeredményekkel rendelkezünk. 1923-ban Hardy és Littlewood bebizonyította, hogy feltéve az általánosított Riemann-hipotézist, minden elég nagy páratlan szám három prím összege és x-ig legfeljebb O(x^{1/2+\varepsilon}) páros szám nem lehet két prím összege. Az 1930-ban Snyírelman bebizonyította, hogy alkalmas s számra minden 1-nél nagyobb természetes szám s darab prímszám összege (ezt 1912-ben vetette fel Landau). Snyírelman bizonyítása teljesen elemi volt, a Brun-szitára és a Snyírelman-sűrűség általa bevezetett fogalmára épült. 1937-ben Vinogradov új módszert dolgozott ki a


         \sum_{p\leq n} e^{2\pi ip\alpha}

összeg becslésére (itt p prímszámot jelöl) és ezt használva megmutatta, hogy a páratlan számokra vonatkozó állítás egy bizonyos korláttól kezdve igaz. Az eredeti bizonyítás nem adott konkrét korlátot. Később, ezeket a bizonyításokat effektivizálva a következő korlátok adódtak: Hardy-Littlewood n\geq 10^{50}-re, Vinogradov n\geq 10^{6800000}-ra és ennek javításai is n\geq 10^{1346}-ot adnak (M.C.Liu, T.Z.Wang, 2002). J.-M.Deshouillers, G.Effinger, H. te Riele és D. Zinovjev 1997-ben az általánosított Riemann-sejtésből belátta, hogy minden 5-nél nagyobb páratlan szám három prím összege.

Egy kutatási irány azt vizsgálja, hány kivételes szám lehet, tehát olyan 2-nél nagyobb páros szám, ami nem áll elő két prímszám összegeként. A sejtés persze az, hogy ez a szám nulla. Vinogradov módszerét használva, egymástól függetlenül, 1938-ban Csudakov, van der Corput és Estermann belátta, hogy a két prím összegeként nem írható páros számok száma x-ig legfeljebb O(x(logx) A). Ezt Vaughan, illetve Montgomery és Vaughan 1975-ben O(x1 − δ)-ra javította, nagyon kicsi δ értékkel. Ezt többen δ=0,086-ra javították, végül 2004-ben Pintz a δ=1/3 értéket nyerte.

A probléma egy változata, amikor megengedünk összetett számokat, de csak olyanokat, amelyek legfeljebb r prímtényezőt tartalmaznak, az ilyen számokat Pr-rel jelöljük. A legelső idevágó eredmény még Bruntól származik (1919): minden elég nagy páros szám P9 + P9, azaz felírható, mint két olyan szám összege, amelyeknek legfeljebb 9 prímtényezőjük van. Selberg 1950-ben P2 + P3-at igazolt, Rényi Alfréd pedig a nagy szita segítségével bebizonyította, hogy van olyan K szám, hogy minden elég nagy páros szám P1 + PK. Az itt szereplő K értéket többen javították, a jelenlegi rekord 2, tehát minden elég nagy páros szám P1 + P2(J.R.Chen, 1973).


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -