ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Conjectura de Goldbach - Viquipèdia

Conjectura de Goldbach

De Viquipèdia

La conjectura de Goldbach afirma que

 tot nombre enter parell igual o superior a 4 es pot escriure com a suma de dos nombres primers

Malgrat la seva aparent senzillesa, és un dels més antics problemes matemàtics pertanyent a la teoria dels nombres sense demostrar i forma part dels problemes de Hilbert. Fou plantejada el 1742 pel matemàtic prussià Christian Goldbach i és molt fàcil comprovar la seva veracitat per als primers nombres enters:

  4 = 2 + 2
  6 = 3 + 3
  8 = 3 + 5
10 = 3 + 7 = 5 + 5
12 = 5 + 7
14 = 3 + 11 = 7 + 7
etc.

El fet d'expressar un nombre com a la suma de dos nombres primers s'anomena partició de Goldbach.

[edita] Les diverses conjectures de Goldbach

La conjectura que s'ha plantejat anteriorment s'anomena més rigorosament conjectura binària o forta de Goldbach. En realitat la conjectura original de Goldbach, actualment coneguda com a conjectura ternària de Goldbach, afirma que

 tot nombre enter superior a 5 es pot escriure com a suma de tres nombres primers

Leonhard Euler aconseguí reexpressar la versió original en la versió més famosa coneguda actualment (la binària). És a dir la conjectura original (la conjectura ternària) i la binària són dos plantejaments equivalents del mateix problema.

Finalment, també existeix la conjectura dèbil de Goldbach, que afirma que

 tot nombre enter senar superior a 9 es pot escriure com a suma de tres nombres primers senars (és a dir, tots excepte el 2). 

Igual que amb la conjectura forta, tampoc s'ha aconseguit cap demostració de la conjectura dèbil.

[edita] Referències

  • J.-M. Deshouillers; G. Effinger; H. te Riele; D. Zinoviev, «A complete Vinogradov 3-primes theorem under the Riemann hypothesis», Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99--104.
  • Apostolos Doxiadis: L'oncle Petros i la conjetura de Goldbach. Novel·la divulgativa.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -