ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Diagonalisoituva matriisi – Wikipedia

Diagonalisoituva matriisi

Wikipedia

Lineaarialgebrassa n×n-neliömatriisia A sanotaan diagonalisoituvaksi jos se on similaarinen jonkin diagonaalimatriisin D kanssa, eli on olemassa kääntyvä matriisi P siten, että

D = P^{-1}AP\,.

Vastaavasti jos V on äärellisulotteinen vektoriavaruus, lineaarioperaattoria T : V → V sanotaan diagonalisoituvaksi jos on olemassa V:n kanta missä T on diagonaalimatriisi. Diagonalisoituvat matriisit ja -kuvaukset ovat käyttökelpoisia, sillä niitä on helppo käsitellä: niiden ominaisarvot ja ominaisvektorit on helppo laskea ja diagonalisen matriisin potenssi saadaan korottamalla lävistäjäalkiot annettuun potenssiin. Diagonalisointi on prosessi, jossa diagonaalimatriisi tai -lineaarikuvaus etsitään.

Sisällysluettelo

[muokkaa] Perusominaisuudet

Diagonalisoituvien matriisien ja -lineaarikuvausten päätulos on seuraava.

  1. n×n matriisi A, jonka alkiot ovat kunnasta F on diagonalisoituva jos ja vain jos sen ominaisavaruuksien dimensioiden summa on yhtä suuri kuin n. Tämä lause on yhtäpitävä sen kanssa, että on olemassa Fn:n kanta, joka koostuu A:n ominaisvektoreista. Jos tällainen kanta löydetään, voidaan muodostaa matriisi P, jonka sarakkeina nämä vektorit ovat, ja P -1AP on diagonaalimatriisi. Tämän matriisin lävistäjäalkiot ovat A:n ominaisarvot.
  1. Lineaarikuvaus T : V → V on diagonalisoituva jos ja vain jos sen ominaisavaruuksion dimensioiden summa on dim(V), joka puolestaan tapahtuu silloin ja vain silloin, kun on olemassa V:n kanta, joka sisältää T:n ominaisvektorit. Tällöin T on diagonalisoituva ja sen lävistäjäalkiot ovat T:n ominaisvektorit

Vaihtoehtoisesti voidaan sanoa, että matriisi tai lineaarikuvaus on diagonalisoituva kunnassa F jos ja vain jos sen minimaalipolynomi on tulo F:n erillisistä lineaarisista tekijöistä. Seuraava riittävä, mutta ei välttämätön ehto on usein hyödyllinen:

  • Kunnan F n×n-matriisi A on diagonalisoituva jos sillä on n erillistä ominaisarvoa F:ssä, eli sen karakteristisella polynomilla on n erillistä nollakohtaa F:ssä

Nyrkkisääntönä, melkein kaikki kompleksikertoimiset matriisit ovat diagonalisoituvia. Tarkemmin sanottuna kompleksiset n×n matriisit, jotka eivät ole diagonalisoituvia, muodostavat nollajoukon Lebesguen mitan suhteen. Voidaan myös sanoa, että diagonalisoituvat matriisit muodostavat tiheän osajoukon Zariski-topologian suhteen. Tämän avaruuden komplementti sijaitseen siinä joukossa, missä diskriminantin karakteristinen polynomi häviää. Tämä avaruus on hyperpinta.

Sama ei päde \mathbb{R}:ssä: kun n kasvaa, todennäköisyys, että satunnaisesti valittu reaalimatriisi on diagonalisoituva pienenee!

[muokkaa] Diagonalisoituvuuden erikoistapauksia

Matriisin diagonalisoituvuudelle on olemassa muutamia erityistapauksia diagonalisoivan matriisin erityisluonteen mukaan. Nämä erikoistapaukset koskettavat vain pientä osaa matriiseista ja viittaavat yleensä alkuperäisen matriisin omaavan joitakin erityisominaisuuksia.

[muokkaa] Ortogonaalinen diagonalisoituvuus

Matriisi A on ortogonaalisesti diagonalisoituva, jos on olemassa sellainen ortogonaalimatriisi Q, että

D = Q^TAQ\,,

missä QT on Q:n transpoosi.

[muokkaa] Unitaarinen diagonalisoituvuus

Matriisi A on unitaarisesti diagonalisoituva, mikäli on olemassa sellainen unitaarimatriisi U, että

D = U^*AU\,,

missä U * on U:n adjungaatti.

[muokkaa] Katso myös


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -