ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Karakteristinen polynomi – Wikipedia

Karakteristinen polynomi

Wikipedia

Karakteristinen polynomi on neliömatriiseihin liittyvä käsite. Tämä polynomi sisältää useita matriisiin liittyviä ominaisuuksia, huomattavampina matriisin ominaisarvot, determinantti sekä jälki.

[muokkaa] Motivaatio

Annetulle neliömatriisille A on löydettävä polynomi, jonka juuret ovat A:n ominaisarvot. Lävistäjämatriisille A karakteristinen polynomi on helppo määritellä: jos lävistäjäalkiot ovat muotoa ai, on karakteristinen polynomi muotoa

(t - a_1)(t - a_2)(t - a_3)...\,

Tämä siksi, että lävistäjäalkiot ovat matriisin ominaisarvot.

Yleisen matriisin A tapauksessa voidaan menetellä seuraavasti. Jos λ on A:n ominaisarvo, on olemassa ominaisvektori v0 siten, että

A\vec{v} = \lambda\vec{v},

tai

(A - \lambda I)\vec{v} = 0,

missä I on yksikkömatriisi. Koska vektori v on nollasta poikkeava, on matriisi (A − λI) singulaarinen, jolloin sen determinantti on 0. Tämän determinantista saadun polynomin

\det(tI - A) = 0\,

juuret ovat A:n ominaisarvoja. Koska funktio on polynomifunktio, on vaadittu karakteristinen polynomi löydetty.

[muokkaa] Formaali määritelmä

Olkoon K kunta ja A K-kertoiminen n×n-matriisi. A:n karakteristinen polynomi pA(t) on määritelmän mukaan

p_A(t) = \det(A - tI)\,,

missä I on n×n yksikkömatriisi. Tämä on todellakin polynomi, sillä determinantti on määritelty summaksi matriisin alkioiden tuloista. Toisinaan määritellään karakteristinen polynomi kaavalla det(A − tI). Tästä saadaan alkuperäinen määritelmä kertomalla polynomi -1:llä.

[muokkaa] Esimerkki

Lasketaan matriisin

A=\begin{pmatrix}
2 & 1\\
-1& 0
\end{pmatrix}.

karakteristinen polynomi. Tällöin on laskettava seuraavan matriisin determinantti:

\det(t I-A) = \det \begin{pmatrix}
t-2&-1\\
1&t
\end{pmatrix}.

Tämä determinantti on

(t-2)t - 1\cdot(-1) = t^2-2t+1.\,\!

Tämä on A:n karakteristinen polynomi, missä t on matriisin ominaisarvo.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -