See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Titius-Bode-Reihe – Wikipedia

Titius-Bode-Reihe

aus Wikipedia, der freien Enzyklopädie

Johann Daniel Titius (1729–1796)
Johann Daniel Titius (1729–1796)
Johann Elert Bode (1747–1826)
Johann Elert Bode (1747–1826)

Die Titius-Bode-Reihe (auch titius-bodesche Reihe, bode-titiussche Beziehung, bodesche Regel und dergleichen) ist eine von Johann Daniel Titius empirisch gefundene und von Johann Elert Bode bekannt gemachte numerische Beziehung, nach der sich die Abstände der meisten Planeten von der Sonne mit einer einfachen mathematischen Formel näherungsweise allein aus der Nummer ihrer Reihenfolge herleiten lassen.

Inhaltsverzeichnis

Formel

Titius nahm die Zahlenfolge 0, 3, 6, 12, 24, 48, 96 usw., in der nach der 3 jede Zahl das Doppelte der vorangegangenen ist und addierte zu jeder Zahl 4. In der sich daraus ergebenden Zahlenfolge ordnete er dem mittleren Bahnradius der Erde die Zahl 10 zu und erhielt mit diesem Maß die Entfernungen aller bekannten Planeten von der Sonne.

Nach der Formulierung von Titius und Bode ergibt sich als ursprüngliche Formel:

R_n = 4 + 3\times 2^n

Der Exponent n steht, beginnend bei Merkur, für die Folge der Werte -∞, 0, 1, 2, 3, 4, 5, 6 usw.
So ergibt 3\cdot 2^n von Merkur bis Saturn die Zahlenfolge 0, 3, 6, 12, 24, 48, 96 ...

Erst in der modernen Form der Formel, von Johann Friedrich Wurm aus dem Jahr 1787, ist a der mittlere Abstand eines Planeten von der Sonne, der an der mittleren Entfernung der Erde in Astronomischen Einheiten gemessen wird:

a = 0.4 + 0.3\cdot 2^n

Vergleich mit Messwerten

Planet n Abstand
nach T-B
Wirklicher
Abstand
Abweichung
Merkur -∞ 0,4 0,39 + 2,56 %
Venus 0 0,7 0,72 - 2,78 %
Erde 1 1,0 1,00 0,00 %
Mars 2 1,6 1,52 + 5,26 %
(Ceres) 3 2,8 (2,77) (+ 1,08 %)
Jupiter 4 5,2 5,20 0,00 %
Saturn 5 10,0 9,54 + 4,82 %
Uranus 6 19,6 19,19 + 2,14 %
Neptun 30,06
(Pluto) 7 38,8 (39,48) (- 1,72 %)
(Eris) 8 77,2 (67,7) (+ 14,0 %)


Die Regel stimmt zumeist bis auf wenige Prozent mit den tatsächlichen Verhältnissen überein. Allerdings gibt es einige Unstimmigkeiten:

  • Für Merkur müsste der Wert n gemäß der übrigen Folge nicht -∞ sondern -1 sein.
  • Zwischen Mars und Jupiter befindet sich der Asteroidengürtel. Der größte Körper hierin ist Ceres, der kein Planet, sondern ein Zwergplanet ist.
  • Neptun hat keinen Platz in dieser Reihe. Stattdessen nimmt praktisch Pluto seinen Platz ein, dessen Status als Planet am 24. August 2006 von der IAU jedoch aberkannt und in den eines Zwergplaneten geändert wurde.
  • Eris ist ebenfalls ein Zwergplanet, ist größer als Ceres und Pluto, passt aber im Gegensatz zu diesen nicht gut in die Reihe.

Geschichte

Bereits 1723 berechnete Christian Wolff für die durchschnittlichen Abstände der bekannten Planeten eine Zahlenreihe, nach der sich der mittlere Bahnradius der Erde aus zehn Einheiten zusammensetzt und sich für die Planeten Merkur bis Saturn die Werte 4, 7, 10, 15, 52 und 95 ergeben. 1766 hat Johann Daniel Titius für eine möglichst ähnliche Abstandsreihe eine Formel entworfen. Johann Elert Bode fand sie in einer Fußnote in dem durch Titius übersetzten Buch Contemplation de la nature von Charles Bonnet und hat sie im Jahr 1772 in seiner Anleitung zur Kenntnis des gestirntes Himmels allgemein bekannt gemacht. Dabei erwähnte er jedoch nicht den Autor der übernommenen Formulierung, holte das aber später nach. Die zufällige Entdeckung des Uranus 1781 durch Wilhelm Herschel bedeutete eine Bestätigung dieser Regel und ließ sie für alle damals bekannten Planeten als Gesetz erscheinen. Viele Astronomen suchten nun nach einem Planeten in der verhältnismäßigen Lücke zwischen Mars und Jupiter. Unabhängig davon hat dann in der Nacht zum 1. Januar 1801 Giuseppe Piazzi einen Himmelskörper aufgespürt, den man dieser Entfernung zuordnen konnte. Es war der Asteroid Ceres, der erste entdeckte Kleinplanet und der mit Abstand größte dieser auch Planetoiden genannten Körper, der zusammen mit dem ganzen Asteroidengürtel diese Lücke schloss. Seit August 2006 hat Ceres den neuen Status eines Zwergplaneten.

Schon Johannes Kepler hatte auf empirischem Weg eine mathematische Ordnung der Planeten erwogen. In diesem Fall war es eine geometrische Beziehung. In seinem 1596 veröffentlichten Buch Mysterium Cosmographicum ("Das Weltgeheimnis") hat Kepler die Bahnen der damals bekannten Planeten Merkur bis Saturn als Querschnitt von Kugelschalen mit der Oberfläche der fünf platonischen Körper in Beziehung gesetzt. Zwischen den ineinander verschachtelten Bahnsphären der sechs Planeten passten nach einigen Korrekturen die einzelnen Oberflächen der fünf platonischen Körper je nach ihrer Form als Abstandshalter gerade so hinein. In seinem 1619 erschienenen Werk Harmonice Mundi ("Weltharmonik") hat er diese Theorie weiterentwickelt.

Kontroverse

Für die Titius-Bode-Reihe gibt es keine gesicherte Erklärung, warum sich die Abstände der Planeten so darstellen lassen und warum diese Beziehung gerade so und nicht anders aussieht. Die numerische Regel fällt förmlich vom Himmel, ohne dass irgendein Bezug zu physikalischen Prinzipien oder Phänomenen hergestellt wird. Manche meinen, es wird eine Ordnung hineingesehen, wo keine ist, und wieder andere vermuten dahinter ein tiefer liegendes Naturgesetz, vielleicht gar eine neue Physik oder zumindest eine neue Kosmogonie für die Entstehung des Sonnensystems. Für die zentrale und stillschweigende Voraussetzung, dass sich die Abstände der Planeten von der Sonne immer um den selben Faktor unterscheiden, ist keine überzeugende physikalische Begründung in Sicht.

Aufschlussreicher für die himmelsmechanische Organisation des Planetensystems ist die Betrachtung der Umlaufzeiten. Die Umlaufperioden der jeweils benachbarten Planeten befinden sich zueinander in Kommensurabilität; das heißt, sie stehen in einem Verhältnis, das auf einem gemeinsamen Maß beruht und sich – teils annähernd, teils ziemlich exakt – durch kleine ganze Zahlen ausdrücken lässt:


Die gerundeten (und genauen) Verhältnisse
zwischen den Umlaufzeiten der Planeten
Merkur 2:5 (2:5,11) Venus
Venus 8:13 (8:13,004) Erde
Erde 1:2 (1:1,88) Mars
Mars 2:5 (2:4,89) (Ceres)
(Ceres) 2:5 (2:5,15) Jupiter
Jupiter 2:5 (2:4,97) Saturn
Saturn 1:3 (1:2,85) Uranus
Uranus 1:2 (1:1,96) Neptun
Neptun 2:3 (2:3,01) (Pluto)

So gesehen beruht der frühere Erfolg der Titius-Bode-Reihe im Allgemeinen auf den kommensurablen Umlaufverhältnissen und im Einzelnen auf das empirische Zurechtbiegen der einheitlichen Formel, um alle unterschiedlichen Verhältnisse mit einer höchstmöglichen Genauigkeit zu erfassen. Simulationen zur Entstehung von Planetensystemen scheinen Resonanz-Effekte zwischen den Planeten als mögliche Ursache zu bestätigen.

Statistische Versuche zeigten jedoch, dass sich an ein hypothetisches Planetensystem fast immer eine einfache Formel anpassen lässt, wenn man ähnliche Abweichungen zulässt. Auch bei den Mondsystemen fallen Kommensurabilitäten auf und lassen sich durch ähnliche Reihenformeln zusammenfassen, aber diese Reihen sind für jedes System anders; sie ergeben nur Zahlenspielereien, die noch kein neues himmelsmechanisches Gesetz aufdecken konnten.

Unter der Annahme, dass es sich bei der Titius-Bode-Reihe nicht nur um Zufall oder nur um einen statistischen Effekt handelt, wurden zahlreiche Hypothesen für die oben genannten Ausnahmen aufgestellt. So hat man in den Objekten des Asteroidengürtels die Bruchstücke eines ehemaligen Planeten gesehen, der in die wissenschaftlich-fantastische Literatur unter dem Namen Phaeton eingegangen ist. Die Untersuchungen haben im Laufe der Zeit aber gezeigt, dass die Gesamtmasse aller Asteroiden nur etwa fünf Prozent der Masse des Erdmondes beträgt und dass viele der Kleinkörper eher aus verschiedenen, einst größeren Asteroiden hervorgegangen sind. Eine andere Hypothese ging davon aus, dass die Umlaufbahnen von Neptun und Pluto von einem nahe vorbeiziehenden, massereichen Objekt gestört und verändert worden sein könnten.

Die Ursache einer möglichen Abstandsordnung wird im Allgemeinen in der Bildungszeit des Sonnensystems gesehen. Die Titius-Bode-Reihe hat für die Forschung an Bedeutung verloren und ist heute nur noch von historischer Bedeutung.

Siehe auch

Literatur

  • Sterne und Weltraum 6/2002; Günther Wuchterl: Die Ordnung der Planetenbahnen, Teil 1.
  • Sterne und Weltraum 12/2002; Günther Wuchterl: Die Ordnung der Planetenbahnen, Teil 2.

Weblinks


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -