See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bewertungstheorie – Wikipedia

Bewertungstheorie

aus Wikipedia, der freien Enzyklopädie

Im mathematischen Teilgebiet der Bewertungstheorie geht es um Verallgemeinerungen der Frage, durch welche Potenz einer festen Primzahl eine natürliche Zahl teilbar ist.

Inhaltsverzeichnis

[Bearbeiten] p-Bewertung

Es sei p eine Primzahl.

Die p-Bewertung (auch: die p-adische Bewertung oder der p-Exponent) vp(n) einer natürlichen oder ganzen Zahl n ist die größte Zahl k, so dass n noch durch pk teilbar ist. Die p-Bewertung gibt an, wie oft eine Primzahl p in der Primfaktorzerlegung einer natürlichen oder ganzen Zahl vorkommt.

Die p-Bewertung einer natürlichen Zahl n ist der Exponent der Primzahl p in der Primfaktorzerlegung von n. Ist

n = p_1^{a_1}p_2^{a_2}...p_k^{a_k},

so ist

v_{p_1}(n) = a_1,\quad v_{p_2}(n) = a_2,\quad\ldots,\quad v_{p_k}(n) = a_k.

Tritt eine Primzahl p nicht in der Primfaktorzerlegung von n auf, dann ist vp(n) = 0.

Man setzt v_p(0) = \infty, weil jede Potenz jeder Primzahl die 0 teilt.

Die p-Bewertung einer ganzen Zahl ist die ihres Betrags.

Die p-Bewertung einer rationalen Zahl ist die Differenz der p-Bewertungen des Zählers und des Nenners: Für eine rationale Zahl r = \frac{m}{n} mit m,n\in\mathbb Z ist also

vp(r) = vp(m) − vp(n).

Geht p nur im Nenner des (vollständig gekürzten) Bruchs m / n auf, ist vp(r) also eine negative Zahl.

Die p-Bewertung rationaler Zahlen spielt eine wichtige Rolle bei einer Konstruktionsart der p-adischen Zahlen: die Funktion

r\mapsto p^{-v_p(r)}

bildet auf den rationalen Zahlen einen nichtarchimedischen Betrag.

[Bearbeiten] p-ganze und S-ganze Zahlen

Eine p-ganze Zahl (auch "p-adisch ganze Zahl" oder "für p ganze Zahl") ist eine rationale Zahl, die nichtnegative p-Bewertung hat, d.h. bei der in einer vollständig gekürzten Bruchdarstellung der Nenner nicht durch p teilbar ist. Rationale Zahlen, die nicht p-ganz sind, werden manchmal auch "p-gebrochen" genannt.

Die Menge aller p-ganzen Zahlen ist ein Unterring von \mathbb Q, der \mathbb Z_{(p)} geschrieben wird. \mathbb Z_{(p)} ist ein diskreter Bewertungsring, insbesondere gibt es bis auf Assoziierte genau ein irreduzibles Element, nämlich p.

Ist allgemeiner S eine Menge von Primzahlen, so ist eine S-ganze Zahl eine rationale Zahl, die p-ganz für jedes p\notin S ist (!), d.h. bei der in einer vollständig gekürzten Bruchdarstellung der Nenner nur durch Primzahlen aus S teilbar ist. Die Menge der S-ganzen Zahlen bildet einen Unterring \mathbb Z_S von \mathbb Q. Beispielsweise ist für S=\varnothing also \mathbb Z_S=\mathbb Z, für S=\complement\{p\} ist \mathbb Z_S=\mathbb Z_{(p)}.

[Bearbeiten] Diskrete Bewertungen

Es sei K ein Körper. Dann heißt eine surjektive Funktion

v\colon K\to\mathbb Z\cup\{\infty\}

eine diskrete Bewertung, wenn die folgenden Eigenschaften erfüllt sind:

  • v(ab) = v(a) + v(b)
  • v(a)=\infty\iff a=0
  • v(a+b)\geq\min\{v(a),v(b)\}

für alle a,b\in K. K zusammen mit v heißt diskret bewerteter Körper.

[Bearbeiten] Beispiele

  • die p-Bewertung auf den rationalen Zahlen für eine Primzahl p
  • die Nullstellen- bzw. Polordnung meromorpher Funktionen in einem festen Punkt

[Bearbeiten] Diskrete Bewertungen und diskrete Bewertungsringe

Die Teilmenge

\{x\in K\mid v(x)\geq0\}

bildet einen Unterring von K, den Bewertungsring von v. Er ist ein diskreter Bewertungsring, und ist umgekehrt (A,\mathfrak m) ein diskreter Bewertungsring, so ist durch

v(x)=\sup\{k\in\mathbb Z\mid x\in\mathfrak m^k\}

eine diskrete Bewertung auf dem Quotientenkörper von A definiert.

Diskrete Bewertungsringe und diskret bewertete Körper entsprechen einander.

[Bearbeiten] Allgemeine Bewertungen

Ist G eine totalgeordnete abelsche Gruppe und K ein (kommutativer) Körper, so ist eine Abbildung

v\colon K\to G\cup\{\infty\}

eine Bewertung, wenn die folgenden Eigenschaften erfüllt sind:

  • v(ab) = v(a) + v(b)
  • v(a)=\infty\iff a=0
  • v(a+b)\geq\min\{v(a),v(b)\}

für alle a,b\in K.

K heißt dann auch ein bewerteter Körper mit Wertegruppe v(K^\times)\subseteq G.

[Bearbeiten] Bewertungen und Bewertungsringe

Ein Integritätsbereich A heißt Bewertungsring, wenn er die folgende Eigenschaft hat:

Für jedes Element x des Quotientenkörpers von A gilt x\in A oder x^{-1}\in A.

Ist A ein Bewertungsring mit Quotientenkörper K, so kann man eine Bewertung auf K mit Wertegruppe G=K^\times/A^\times definieren:

v\colon K\to G\cup\{\infty\},\quad v(x)=\left\{\begin{matrix}\infty&x=0\\{}[x]&x\in K^\times;\end{matrix}\right.

dabei bezeichnet [x] das Bild von x in G=K^\times/A^\times; die Ordnung auf G ist definiert durch

[x]\geq[y]\iff xy^{-1}\in A für x,y\in K^\times.

Ist umgekehrt K ein bewerteter Körper mit Bewertung v, so ist

\{x\in K\mid v(x)\geq0\}

ein Bewertungsring, der dann auch der Bewertungsring zur Bewertung v genannt wird. Die Gruppe K^\times/A^\times ist kanonisch isomorph zur Wertegruppe von v.

Für einen Körper K gibt es also eine bijektive Beziehung zwischen Isomorphieklassen von Bewertungen auf K und Bewertungsringen, die in K enthalten sind.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -