New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bellsches Raumschiffparadoxon – Wikipedia

Bellsches Raumschiffparadoxon

aus Wikipedia, der freien Enzyklopädie

Das bellsche Raumschiffparadoxon ist ein Paradoxon zur Längenkontraktion in der Relativitätstheorie, das 1976 von John Stewart Bell beschrieben wurde. Die zugrunde liegende Fragestellung wurde allerdings schon seit den zwanziger Jahren des 20. Jahrhunderts analysiert und 1959 von E. Dewan, M. Beran publiziert.

Inhaltsverzeichnis

[Bearbeiten] Die Längenkontraktion

Die Längenkontraktion, auch Lorentzkontraktion genannt, ist ein Phänomen der relativistischen Physik. Jeder bewegte Maßstab ist in Bewegungsrichtung kürzer als ein gleicher, ruhender Maßstab. Diese Verkürzung entzieht sich unserer Alltagserfahrung, da sie sich erst bei Geschwindigkeiten bemerkbar macht, die im Vergleich zur Lichtgeschwindigkeit ins Gewicht fallen.

[Bearbeiten] Das Paradoxon

Der Vorgang aus der Sicht des ruhenden Beobachters: Oben die beiden Raketen beim Start und unten bei 60 % der Lichtgeschwindigkeit. Der Abstand L bleibt gleich, die beiden Raketen und das Seil erfahren dagegen eine Längenkontraktion auf 80 % ihrer Länge im Ruhezustand, so dass das Seil reißt.
Der Vorgang aus der Sicht des ruhenden Beobachters: Oben die beiden Raketen beim Start und unten bei 60 % der Lichtgeschwindigkeit. Der Abstand L bleibt gleich, die beiden Raketen und das Seil erfahren dagegen eine Längenkontraktion auf 80 % ihrer Länge im Ruhezustand, so dass das Seil reißt.

John Bell betrachtete dazu das folgende Gedankenexperiment: Zwei Raumschiffe beginnen, von einem ruhenden Beobachter gesehen, gleichzeitig aus dem Stand heraus zu beschleunigen und zwar in Richtung ihrer Verbindungslinie. Zwischen beiden ist ein Seil gespannt, das bei der geringsten Dehnung reißt. Reißt das Seil, wenn seine Befestigungspunkte und jedes Teilstück des Seils in genau gleicher Weise bis zur selben Endgeschwindigkeit beschleunigt werden?

Da die Befestigungspunkte gleich beschleunigt werden, bleibt ihr Abstand L für den ruhenden Beobachter unverändert. Das Seil ist bewegt und wegen der Längenkontraktion kürzer als in Ruhe. In Ruhe muss es daher länger als L sein, um vom einem Befestigungspunkt zum anderen zu reichen. Das Seil reißt.

Wenn man die relativistischen Effekte nicht berücksichtigt, scheint dieses Ergebnis aus Sicht der Raketenbesatzungen widersprüchlich zu sein. Denn würden auch hier gleiche Beschleunigungen zu gleichen Zeiten auftreten, würde sich der Abstand L nicht ändern. Und da hier das Seil ruht, würde dieses auch nicht seine Länge ändern und nicht reißen.

Die Auflösung dieses scheinbaren Widerspruchs ist, dass aus der Sicht der Besatzungen beide Beschleunigungen aufgrund der Relativität der Gleichzeitigkeit nicht zu gleichen Zeiten gleich sind. Für beide Besatzungen beschleunigt die hintere Rakete langsamer und erreicht erst nach der vorderen Rakete ihre Endgeschwindigkeit. Wird beispielsweise jedes Triebwerk zweimal kurz gezündet, und finden beide Schubphasen für den ruhenden Beobachter gleichzeitig statt, dann findet der zweite Schub für die dann schon bewegten Besatzungen nicht gleichzeitig statt, sondern bei der vorderen Rakete früher als bei der hinteren. Die Schübe ereignen sich aus Sicht der Besatzungen bei der vorderen Rakete in kürzerer Zeit, sie ist in kürzerer Zeit beschleunigt und daher am Ende bei gleicher Endgeschwindigkeit weiter von der hinteren Rakete entfernt als vor der Beschleunigung. Auch beide Besatzungen sehen daher das Seil reißen.

[Bearbeiten] Geschichte

Bereits 1959 beschrieben E. Dewan und M. Beran eine Variante des zugrunde liegenden Problems korrekt. Das Ergebnis wurde in von Zeit zu Zeit wieder aufkommenden Debatten in Frage gestellt. 1962 veröffentlichte P. J. Nawrocki einen Aufsatz, der der Analyse von E. Dewan und M. Beran widersprach. E. Dewan verteidigte seine Analyse 1963. 1976 und 1987 beschrieb J. S. Bell das Problem, das seitdem das bellsche Raumschiffparadoxon genannt wird. T. Matsuda und A. Kinoshita berichteten 2004 von einer regen Kontroverse in japanischen Physik-Journalen, nachdem sie dort die von ihnen ebenfalls vertretene Standarderklärung des Paradoxons (siehe oben) veröffentlicht hatten. Matsuda/Kinoshita schlossen mit der Feststellung, dass selbst 100 Jahre nach Veröffentlichung der SRT es immer noch Physiker gäbe, welche die wirkliche Bedeutung der Längenkontraktion nicht verstanden hätten.

[Bearbeiten] Literatur

  • E. Dewan, M. Beran: Note on stress effects due to relativistic contraction. American Journal of Physics, Bd. 27, Nr. 7, S. 517–518 (1959). doi:10.1119/1.1996214
  • P. J. Nawrocki: Stress Effects due to Relativistic Contraction. American Journal of Physics, Bd. 30, Nr. 10, S. 771–772 (1962). doi:10.1119/1.1941785
  • E. M. Dewan: Stress Effects due to Lorentz Contraction. American Journal of Physics, Bd. 31, Nr. 5, S. 383–386 (1963). doi:10.1119/1.1969514
  • J. S. Bell: How to teach special relativity. Progress in Scientific Culture, Bd. 1, Nr. 2 (1976)
  • J. S. Bell: Speakable and unspeakable in quantum mechanics. Cambridge University Press (1987), ISBN 0521523389 (enthält den obigen Aufsatz von Bell von 1976)
  • H. Nikolic: Relativistic contraction of an accelerated rod. Am. J. Phys. 67, S. 1007 (1999). physics/9810017
  • T. Matsuda, A. Kinoshita: A Paradox of Two Space Ships in Special Relativity . AAPPS Bulletin, Bd. 14, Nr. 1, S. 3-7 (2004). PDF

[Bearbeiten] Nicht angenommener Artikel

  • J. H. Field, On the Real and Apparent Positions of Moving Objects in Special Relativity: The Rockets-and-String and Pole-and-Barn Paradoxes Revisited and a New Paradox. physics/0403094 Fields Arbeit, der Standardergebnisse zur speziellen Relativitätstheorie als auch das obige allgemein akzeptierte Erklärungsschema zum Paradoxon bestreitet, wurde nicht zur Veröffentlichung angenommen.

[Bearbeiten] Weblinks

Andere Sprachen

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu