ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Uspořádaná n-tice - Wikipedie, otevřená encyklopedie

Uspořádaná n-tice

Z Wikipedie, otevřené encyklopedie

Jako uspořádaná n-tice se v matematice označuje uspořádaný seznam konečného počtu n objektů (je proto možné se také setkat s pojmy jako uspořádaná k-tice apod., konkrétní varianty se pak nazývají uspořádané dvojice, uspořádané trojice atd.). Zapisuje se obvykle jako seznam těchto prvků, uzavřený do kulatých závorek. N-tice se v matematice používají pro definice objektů, které se skládají z nějakých oddělených částí. Např. graf je definován jako uspořádaná dvojice (V, E), ve které V je množina vrcholů a E je množina hran.

[editovat] Vlastnosti, formální definice

Hlavní vlastnosti, které uspořádanou n-tici odlišují od množiny jsou: 1. uspořádaná n-tice může jeden objekt obsahovat vícekrát, 2. závisí na pořadí objektů. Tedy např. zatímco neexistuje množina {2, 2} (resp. je možné ji chápat jako totožnou s množinou {2}), je uspořádaná dvojice (2, 2) dobře definovaná a různá od „uspořádané jednice“ (2). Obdobně, množina {1, 2} je totožná s množinou {2, 1}, zatímco uspořádaná dvojice (1, 2) se uspořádané dvojici (2, 1) nerovná. Rovnost dvou uspořádaných n-tic je totiž definována jako

\left( a_1, a_2, \dots, a_n \right) = \left( b_1, b_2, \dots, b_n \right) \Leftrightarrow a_1 = b_1, a_2 = b_2, \dots, a_n = b_n

Uspořádané n-tice také lze definovat pomocí jednodušších pojmů: uspořádanou n-tici (pro n > 2) je možné chápat jako uspořádanou dvojici prvního prvku a zbytku, kterým je uspořádaná (n−1)-tice:

\left( a_1, a_2, \dots, a_n \right) \sim \left( a_1, \left( a_2, \dots, a_n \right) \right)

A s pomocí běžné konstrukce teorie množin lze tímto způsobem definovat libovolnou uspořádanou n-tici:

  1. Uspořádaná 0-tice () je definována jako prázdná množina ∅.
  2. Pokud x je uspořádaná n-tice, pak {{a}, {a, x}} je uspořádaná (n+1)-tice, začínající prvkem a a pokračující prvky n-tice x.

Podle této definice je např. uspořádaná trojice (1, 2, 2) definována jako:

(1, 2, 2) = {{1}, {1, (2, 2)}} = {{1}, {1, {{2}, {2, (2)}}}} = {{1}, {1, {{2}, {2, {{2}, {2, ∅}}}}}}

[editovat] Související články


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -