ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Distribució normal - Viquipèdia

Distribució normal

De Viquipèdia

La distribució normal, també coneguda com a distribució gaussiana, és una important família de distribucions de probabilitat contínues i és aplicable a molts camps. Cada membre de la família queda definit per dos paràmetres: la localització o mitjana i l'escala o desviació estàndard. Un cas particular és la distribució normal estàndard, pel qual la mitjana és 0 i la desviació estàndard és 1.

Fou Carl Friedrich Gauss qui descobrí la distribució normal quan analitzava dades astronòmiques, i definí l'equació de la seva funció de densitat de probabilitat [1]. Aquesta distribució també s'anomena campana de Gauss, doncs el gràfic de la seva funció de densitat de probabilitat s'assembla a una campana.

La importància de la distribució normal en les ciències naturals i del comportament rau en el teorema central del límit. Aquest teorema estableix que la suma d'un elevat nombre de efectes independents segueix una distribució normal. D'aquesta manera, és útil en processos en els quals hi ha errors de mesura que es deuen a un elevat nombre de factors, tots ells contribuint una petita porció a l'error total. En la teoria de probabilitat i d'inferència estadística, el teorema central del límit garanteix que un llarg nombre d'estadístics segueixen la distribució normal, si més no aproximadament. Per exemple, la mitjana mostral o els estimadors màxim versemblants segueixen aproximadament una distribució normal sota certes condicions matemàtiques que són força generals.

Taula de continguts

[edita] Funció de densitat de probabilitat


f(x;\mu,\sigma) =
\frac{1}{\sigma\sqrt{2\pi}} \, e^{ -\frac{(x- \mu)^2}{2\sigma^2}} = \frac{1}{\sigma} \varphi\left(\frac{x - \mu}{\sigma}\right)

on σ és la desviacio estàndard, μ és l'esperança matemàtica, i

\varphi(x)=\frac{1}{\sqrt{2\pi\,}} \, e^{-\frac{1}{2}x^2}

és la funció de densitat de probabilitat de la distribució normal estàndard, és a dir, la distribució normal amb μ = 0 i σ = 1. Per comprovar que la integral de \varphi(x) sobre la recta real és igual a 1 vegeu la integral de Gauß.

[edita] Funció de distribució

No existeix una fòrmula tancada per a la funció de distribució, però pot aproximar-se amb diversos mètodes, com integració numèrica, sèries de Taylor, sèries asimptòtiques i fraccions continuades.

[edita] Funcions generadores

[edita] Funció generadora de moments

La funció generadora de moments es defineix com a l'esperança matemàtica de exp(tX). Per la distribució normal la funció generadora de moments és:


\begin{align}
M_X(t) & {} = \mathrm{E} \left[ \exp{(tX)} \right] \\
& {} = \int_{-\infty}^{\infty}  \frac{1}{\sigma \sqrt{2\pi} }
\exp{\left( -\frac{(x - \mu)^2}{2 \sigma^2} \right)}
\exp{(tx)} \, dx \\
& {} = \exp{ \left(  \mu t + \frac{\sigma^2 t^2}{2} \right)}
\end{align}

[edita] Funció característica

La funció característica es defineix com a l'esperança matemàtica de exp(itX), on i és el nombre imaginari, i t és un nombre real. Per la distribució normal la funció característica és:

\begin{align}
\chi_X(t;\mu,\sigma) &{} = M_X(i t) = \mathrm{E}
\left[ \exp(i t X) \right] \\
&{}=
\int_{-\infty}^{\infty}
 \frac{1}{\sigma \sqrt{2\pi}}
 \exp
 \left(- \frac{(x - \mu)^2}{2\sigma^2}
 \right)
 \exp(i t x)
\, dx \\
&{}=
\exp
\left(
 i \mu t - \frac{\sigma^2 t^2}{2}
\right).
\end{align}

[edita] Propietats

Algunes propietats:

  1. Si X\, \sim\, N(\mu, \sigma^2) i a i b són nombres reals, aleshores a X + b\, \sim\, N(a \mu + b, (a \sigma)^2) (veure esperança i variància).
  2. Si X \sim N(\mu_X, \sigma^2_X) i Y \sim N(\mu_Y, \sigma^2_Y) són variables aleatòries normals independents, aleshores:
    • La seva suma segueix la distribució normal amb U = X + Y \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y).
    • La seva diferència segueix una distribució normal amb V = X - Y \sim N(\mu_X - \mu_Y, \sigma^2_X + \sigma^2_Y).
    • U i V són independents.
    • La divergència de Kullback-Leibler, D_{\rm KL}( X \| Y ) =
{ 1 \over 2 } \left( \log \left( { \sigma^2_Y \over \sigma^2_X } \right) + \frac{\sigma^2_X}{\sigma^2_Y} +
\frac{\left(\mu_Y - \mu_X\right)^2}{\sigma^2_Y} - 1\right).
  3. Si X \sim N(0, \sigma^2_X) i Y \sim N(0, \sigma^2_Y) són variables aleatòries normals independents, aleshores:
  4. Si X_1, \dots, X_n són variables aleatòries independents idènticament distribuïdes amb distribució normal estàndard, aleshores X_1^2 + \cdots + X_n^2 segueix una distribució chi-quadrat amb n graus de llibertat.

[edita] Estandaritzant variables aleatòries normals

Com a conseqüència de la Propietat 1, és possible relacionar totes les variables aleatòries normals amb la distribució normal estàndard.

Si \ X \sim \mathcal{N}(\mu, \sigma^2), aleshores

Z = \frac{X - \mu}{\sigma} \!

és una variable aleatòria normal estàndard: \ Z \sim \mathcal{N}(0,1). Una conseqüència important és que la funció de distribució de \ X és :

\Pr(X \leq x) = \Phi \left(\frac{x-\mu}{\sigma}\right),

on Φ és la funció de distribució normal estàndard: per a tot real t,

\ \Phi(t) = \int_{-\infty}^{\,t}\varphi(u)\, du = \int_{-\infty}^{\,t}\frac{1}{\sqrt{2\,\pi}}\,\mathrm{e}^{-\frac{u^2}{2}}\, du = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{t}{\sqrt{2}}\right)\right).

D'altra banda, si Z és una variable aleatòria normal estàndard, \ Z \sim \mathcal{N}(0,1), aleshores

X = \sigma\, Z + \mu

és una variable aleatòria normal amb esperança μ i variància σ2.

La funció de distribució normal estàndard Φ ha estat tabulada, i les altres funcions de distribució normals en són simples transformacions, tal i com hem explicat anteriorment. Per tant, un pot emprar valors tabulats de la funció de distribució normal estàndard per a trobar el valor de la funció de distribució de qualsevol altre distribució normal.

[edita] Moments

Alguns dels primers moments de la distribució normal són:

Número Moment Moment central Cumulant
0 1 1
1 μ 0 μ
2 μ2 + σ2 σ2 σ2
3 μ3 + 3μσ2 0 0
4 μ4 + 6μ2σ2 + 3σ4 4 0

Tots els cumulants de la distribució normal a partir del segon són zero.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -