ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Exponenciális eloszlás - Wikipédia

Exponenciális eloszlás

A Wikipédiából, a szabad enciklopédiából.

Az X valószínűségi változó λ paraméterű exponenciális eloszlást követ – vagy rövidebben exponenciális eloszlású – pontosan akkor, ha sűrűségfüggvénye


f(x) = \left\{\begin{matrix}
\lambda e^{-\lambda x} &,\; x \ge 0, \\
0 &,\; x < 0.
\end{matrix}\right.


ahol λ > 0.

Tartalomjegyzék

[szerkesztés] Az exponenciális eloszlást jellemző függvények

Eloszlásfüggvénye


F(x)
= \left\{\begin{matrix}
1-e^{-\lambda x}&,\; x \ge 0, \\
0 &,\; x < 0.
\end{matrix}\right.

Karakterisztikus függvénye


\varphi (t)
=
\left(
 1-
 \frac{it}{\lambda}
\right)^{-1}

[szerkesztés] Az exponenciális eloszlást jellemző számok

Várható értéke


\bold E (X)=\frac{1}{\lambda}

Szórása


\bold D (X)=\frac{1}{\lambda}

Momentumai


\bold E (X ^k)
=
\frac{k!}{\lambda^k}

Ferdesége


\beta_1(X)=2
\,

Lapultsága


\beta_2(X)=6
\,

[szerkesztés] Exponenciális eloszlású valószínűségi változók néhány fontosabb tulajdonsága

  • Exponenciális eloszlású független valószínűségi változók összege Γ-eloszlású. Pontosabban ha X1, X2, ... Xn független, λ paraméterű exponenciális eloszlású valószínűségi változók, akkor X1 + X2 + ... + Xn n rendű, λ paraméterű Γ-eloszlású valószínűségi változó.
  • Az exponenciális eloszlás rendelkezik az örökifjú tulajdonsággal, vagyis tetszőleges x és Δx > 0 esetén teljesül, hogy:
P\left( X\ge x+\Delta x\ |\ X\ge x\right)=P\left(X\ge\Delta x\right)

[szerkesztés] Megjegyzés

Van, hogy exponenciális eloszlás alatt a valószínűségi eloszlások egy szélesebb csoportját értik. Ilyenkor bármilyen aR értékre X + a -t is exponenciális eloszlásúnak definiálják, ahol X egy, a fenti értelemben vett exponenciális eloszlású valószínűségi változó. (Lényegében a valós számmal való eltolásra nézve zárttá teszik az exponenciális eloszlások halmazát.)

[szerkesztés] Forrás

  • Fazekas I. (szerk.) (2000): Bevezetés a matematikai statisztikába. Kossuth Egyetemi Kiadó, Debrecen.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -