See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Folium de Descartes - Wikipédia

Folium de Descartes

Un article de Wikipédia, l'encyclopédie libre.

Le Folium de Descartes
Le Folium de Descartes

[modifier] Étymologie et histoire

Le Folium de Descartes est une courbe mathématique étudiée tout d'abord par Descartes et Roberval en 1638 (lors d'une correspondance avec Mersenne) puis étudiée par Huygens en 1672. Cette courbe met en évidence les faiblesses de la méthode de Fermat dans la recherche des extremums d'une courbe algébrique.

La courbe possède une forme de nœud de ruban. Lors de leur étude, Descartes et Roberval se limitèrent à une boucle, ne considérant que les coordonnées positives (x>0,y>0) car ils pensaient que la boucle se répetait dans chaque quart de repère, à la manière des quatre pétales d'une fleur (d'ou son nom de folium = feuille). La méthode de détermination des tangentes à la courbe fut ensuite proposée par Roberval. La nature asymptotique des branches infinies ne fut établie qu'en 1692 par Huygens.

[modifier] Définition mathématique

Le folium de Descartes n'est en général pas défini par une propriété géométrique, c'est une cubique définie par :

x3 + y3 = 3axy
\rho=\frac{3a \sin(\theta) \cos(\theta)}{\cos(\theta)^3+\sin(\theta)^3}
\left\{\begin{matrix}
x&=&\frac{3at}{1+t^3}\\
y&=&tx
\end{matrix}\right.

a étant un réel quelconque.

L'aire de la boucle est égale à celle du domaine situé entre la courbe et son asymptote (d'équation x + y = − a) de valeur \frac{3a^2}{2} et cette courbe admet l'origine comme point double.

Exemples de courbes
Coniques (dont cercle, ellipse, parabole, hyperbole)
CardioïdeCissoïdeClothoïdeCycloïdeÉpicycloïdeHypocycloïde (astroïde, deltoïde) • Folium de Descartes

HypotrochoïdeSpirale (dont logarithmique, d'Archimède) • Hélice

Lemniscates (dont lemniscate de Gerono, lemniscate de Booth, lemniscate logarithmique, courbe du diable)
TrajectoireOvale de CassiniChaînetteCourbe brachistochrone
Accéder au portail de la géométrie


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -