See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Cissoïde - Wikipédia

Cissoïde

Un article de Wikipédia, l'encyclopédie libre.


La cissoïde ou (courbe) cissoïdale de deux courbes (C1) et (C2) par rapport à un point fixe O est le lieu géométrique des points P tels que \vec{OP}=\vec{OP1}+\vec{OP2} où P1 est un point de (C1) et P2 un point de (C2), P1 et P2 étant alignés avec O.

La cissoïde peut aussi être vue comme la courbe médiane de pôle O des courbes C'1 et C'2, images de C1 et C2 par une homothétie de centre O et de rapport 1/2.

Sommaire

[modifier] Étymologie et histoire

Le terme cissoïde provient du grec kissos lierre et eidos forme. En effet, la cissoïde de Dioclès rappelle la forme d'une feuille de lierre.

[modifier] Définition mathématique

L'équation polaire de la cissoïde de pôle O des courbes R = f1(θ) et R = f2(θ) est donné par:

R = f1(θ) + f2(θ)

Une cissoïde peut aussi être décrite comme la différence au lieu de la somme de 2 courbes.

[modifier] Propriétés

  • Si (C1) et (C2) sont deux droites parallèles, la cissoïdale est aussi une droite parallèle.
  • Si (C1) et (C2) sont deux droites sécantes, la cissoïdale est une hyperbole passant par O, d'asymptotes C1 et C2.
  • Si (C2) est un cercle et que le point fixe O est le centre de ce cercle, la cissoïdale est une conchoïde de la courbe (C1).
  • Si (C1) est une conique, (C2) est une droite, et que le point fixe O est sur la conique, on obtient une cissoïde de Zahradnik.
  • Si (C1) et (C2) sont des cercles et le point fixe O est sur l'un des cercles, on obtient une quartique bicirculaire rationnelle.
  • Si (C1) et (C2) sont des cercles et le point fixe O est le milieu des centres, on obtient une courbe de Booth, dont la lemniscate de Bernoulli est un cas particulier.

[modifier] Liens externes


Exemples de courbes
Coniques (dont cercle, ellipse, parabole, hyperbole)
CardioïdeCissoïdeClothoïdeCycloïdeÉpicycloïdeHypocycloïde (astroïde, deltoïde) • Folium de Descartes

HypotrochoïdeSpirale (dont logarithmique, d'Archimède) • Hélice

Lemniscates (dont lemniscate de Gerono, lemniscate de Booth, lemniscate logarithmique, courbe du diable)
TrajectoireOvale de CassiniChaînetteCourbe brachistochrone
Accéder au portail de la géométrie


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -