Nhóm Lie
Bách khoa toàn thư mở Wikipedia
Bài này đang được dịch từ tiếng Anh. Nếu bạn có đủ khả năng xin góp sức dịch bài này. Nếu không tiếp tục được quan tâm, phần ngoại ngữ của bài sẽ bị xóa sau khoảng 1 tháng. Xin đừng quên chuyển các mục Chú thích, Tham khảo vào bài dịch để đáp ứng tiêu chuẩn. Xin tham khảo Hướng dẫn cách biên soạn bài để biết thêm chi tiết. |
Trong toán học, một nhóm Lie, được đặt tên theo nhà toán học người Na Uy là Sophus Lie (IPA pronunciation: [liː], đọc như là "Lee"), là một nhóm (group) cũng là một đa tạp trơn (differentiable manifold), với tính chất là các toán tử nhóm là tương thích với cấu trúc trơn. Nhóm Lie đại diện cho lý thuyết phát triển nhất của các đối xứng liên tục của các cấu trúc toán học. Điều này đã làm nhóm Lie là công cụ cho gần như tất cả các ngành toán hiện đại, và vật lý lý thuyết hiện đại, đặc biệt là trong vật lý hạt.
Bởi vì các nhóm Lie là các đa tạp, chúng có thể được nghiên cứu sử dụng giải tích vi phân (differential calculus), tương phản với trường hợp các nhóm topo tổng quát hơn. Một trong những ý tưởng chính trong lý thuyết về nhóm Lie, đề ra bởi Sophus Lie, là thay thế cấu trúc toàn cục, nhóm, với phiên bản mang tính địa phương của nó hay còn gọi là phiên bản đã được làm tuyến tính hóa, mà Lie gọi là một nhóm cực nhỏ mà bây giờ được biết đến như là đại số Lie.
Nhóm Lie đã cung cấp một phương tiện tự nhiên để phân tích các đối xứng liên tục của các phương trình vi phân (lý thuyết Picard-Vessiot), trong một cách thức như các nhóm hoán vị (permutation group) được sử dụng trong lý thuyết Galois để phân tích các đối xứng rời rạc của các phương trình đại số.
[sửa] Lịch sử ban đầu
Theo Hawkins, một sử gia toán học, Sophus Lie tự cho là mùa đông năm 1873–1874 là năm khai sinh lý thuyết nhóm liên tục của ông. Một số ý tưởng ban đầu của Lie được phát triển khi hợp tác chặt chẽ với Felix Klein. Lie khẳng định rằng các kết quả chính đã được chứng minh vào năm 1884. Tuy nhiên, trong suốt những năm 1870 tất cả các bài báo của ông (ngoại trừ các bài đầu tiên) được xuất bản trong các tạp chí bằng tiếng Na Uy, đã làm chậm đi sự công nhận của các công trình của ông trên toàn bộ châu Âu. Vào năm 1884 một nhà toán học trẻ người Đức, Friedrich Engel, đến làm việc với Lie để viết nên một luận án có hệ thống về lý thuyết nhóm liên tục của ông. Từ cố gắng này đã phát sinh ra bộ sách ba tập Theorie der Transformationsgruppen (Lý thuyết của các nhóm biến đổi), xuất bản năm 1888, 1890, và 1893.
Các ý tưởng của Lie không phải là đứng đơn độc so với phần còn lại của toán học. Thật ra, những nghiên cứu của ông về hình học của các phương trình vi phân được khởi nguồn từ các tác phẩm của Carl Gustav Jacobi, về lý thuyết phương trình vi phân riêng phần bậc 1 và các phương trình của cơ học cổ điển. Đa số các tác phẩm của Jacobi được xuất bản sau khi ông qua đời vào những năm 1860, đã được rất nhiều người chú ý ở Pháp và Đức. Ý tưởng ban đầu của Lie là phát triển một lý thuyết về các đối xứng của các phương trình vi phân để đạt đến những điều mà Evarist Galois đã làm được cho các phương trình đại số: nghĩa là, phân loại chúng theo lý thuyết nhóm. Các nguyên nhân khác để nghiên cứu các nhóm liên tục đến từ các ý tưởng của Bernhard Riemann, trên nền tảng của hình học, và các phát triển thêm của Klein. Do đó ba ý tưởng lớn của toán học trong thế kỉ 19 đã được tổng hợp lại bởi Lie để tạo ra lý thuyết mới của ông: ý tưởng của sự đối xứng, đã được làm mẫu bởi Galois thông qua khái niệm đại số của một nhóm; lý thuyết hình học và các lời giải explicit của các phương trình vi phân của cơ học, được tính ra bởi Poisson và Jacobi; các hiểu biết mới về hình học phát triển lên từ các công trình của Plücker, Möbius, Grassmann và những người khác, được dồn lại trong các tầm nhìn mang tính cách mạng của Riemann trong ngành này.
Mặc dù ngày nay Sophus Lie được công nhận một cách đúng đắn là người sáng lập ra lý thuyết về các nhóm liên tục, một bước phát triển lớn trong sự phát triển của lý thuyết cấu trúc, mà có nhiều ảnh hưởng lớn đến các phát triển sau này của toán học, được tạo ra bởi Wilhelm Killing, người vào năm 1888 xuất bản bài báo đầu tiên trong chuỗi bài báo nhan đề Die Zusammensetzung der stetigen endlichen Transformationsgruppen (The composition of continuous finite transformation groups). Các công trình của Killing, sau này được tu chỉnh lại và tổng quát hóa bởi Elie Cartan, dẫn đến việc phân loại đại số Lie semisimple, lý thuyết của Cartan về các không gian đối xứng, và miêu tả của Hermann Weyl về representations of compact and semisimple Lie groups using highest weights.
Weyl brought the early period of the development of the theory of Lie groups to fruition, for not only did he classify irreducible representations of semisimple Lie groups and connect the theory of groups with quantum mechanics, but he also put Lie's theory itself on firmer footing by clearly enunciating the distinction between Lie's infinitesimal groups (i.e. Lie algebras) and the Lie groups proper, and began investigations of topology of Lie groups (Borel (2001), [cần chú thích]). The theory of Lie groups was systematically reworked in modern mathematical language in a monograph by Claude Chevalley.
[sửa] Khái niệm về một nhóm Lie, và các khả năng phân loại
Các nhóm Lie có thể được xem như là gia đình của các phép đối xứng biến đổi một cách trơn tru. Ví dụ như là các phép quay xung quanh một trục cho trước. Điều cần phải được hiểu là bản chất của các phép biến đổi 'nhỏ' này, ở đây là các phép quay với các góc cực nhỏ, nối kết các phép biến đổi lân cận nhau. Cấu trúc toán học nắm bắt cấu trúc này được gọi là một đại số Lie (màLie gọi là "những nhóm cực nhỏ" ("infinitesimal groups"). Nó có thể được định nghĩa bởi vì các nhóm Lie là các đa tạp (manifold), và các không gian tiếp tuyến (tangent space)tại từng điểm cũng định nghĩa được.
Đại số Lie của bất kì một nhóm Lie compact nào (very roughly: one for which the symmetries form a bounded set) cũng có thể được phân tích ra được thành một tổng trực tiếp (direct sum) của một đại số Lie giao hoán và một số nhóm Lie đơn (simple Lie group) khác. Cấu trúc của một đại số Lie abelian là không có gì đáng nói; cái đáng để ý là tổng của các nhóm đơn. Do đó câu hỏi đặt ra là: Các đại số Lie đơn của một nhóm compact là gì? Câu trả lời là hầu hết nó thuộc về 4 gia đình vô hạn, các "đại số Lie cổ điển" An, Bn, Cn và Dn, và chúng có những mô tả khá đơn giản dưới dạng các phép đối xứng trong không gian Euclid. Nhưng cũng có chỉ 5 "đại số Lie ngoại lệ" không rơi vào bất kì các gia đình này. E8 là gia đình lớn nhất trong các gia đình này.
[sửa] Ví dụ
Ví dụ, các ma trận khả nghịch 2×2 định nghĩa trên toàn trường số thực,
tạo thành một nhóm với phép nhân, được kí hiệu bởi GL2(R), là một ví dụ cổ điển của một nhóm Lie; nó là một đa tạp trong không gian 4-chiều. Các giới hạn thêm trên các ma trận 2×2 biểu diễn các phép quay cho chúng ta một nhóm con, được kí hiệu là SO2(R), cũng là một nhóm Lie; mặt đa tạp của đó là 1-chiều, vòng tròn đơn vị, với góc quay là tham số. Trong ví dụ thứ 2 này chúng ta có thể viết một phần tử của nhóm như là
và quan sát rằng phần tử nghịch đảo của phần tử với tham số λ chỉ đơn giản là phần tử với tham số −λ, trong khi phần tử tích của hai phần tử với tham số λ và μ được cho bởi λ+μ; và do đó 2 toán tử của nhóm đều liên tục, như là được yêu cầu.
[sửa] Định nghĩa
Một nhóm Lie thực là một nhóm mà cũng là một đa tạp trơn (smooth manifold) hữu hạn chiều, mà trong đó các phép toán nhân và phép nghịch đảo là các biến đổi trơn.
Có một số khái niệm liên quan khá gần với khái niệm này. Một nhóm Lie phức được định nghĩa một cách tương tự sử dụng đa tạp phức hơn là các đa tạp thực (ví dụ: SL2(C)), và tương tự người ta có thể định nghĩa được một nhóm Lie p-adic trên các số p-adic. Một nhóm Lie vô hạn chiều được định nghĩa với một cách tương tự với việc cho phép đa tạp ẩn bên dưới định nghĩa được phép vô hạn chiều. Các nhóm ma trận hoặc là nhóm đại số nói một cách nôm na là các nhóm của các ma trận, (ví dụ, nhóm trực giao và nhóm symplectic) đưa ra các ví dụ thường gặp nhất của nhóm Lie.
Có thể định nghĩa tương tự nhiều nhóm Lie trên các trường hữu hạn, và những nhóm này đưa ra các ví dụ của các nhóm đơn hữu hạn. Người ta có thể thay đổi định nghĩa bằng cách sử dụng các đa tạp tô pô hay đa tạp giải tích (topological or analytic manifolds) thay vì các đa tạp trơn, nhưng hóa ra là các định nghĩa này không đưa ra thêm điều gì mới: Gleason, Montgomery và Zippin chứng minh trong những năm của thập kỉ 1950 rằng nếu G là một đa tạp topo với các phép toán trên nhóm liên tục, thì tồn tại chính xác một cấu trúc giải tích trên G để biến đổi nó thành một nhóm Lie (xem bài toán thứ 5 của Hilbert và phỏng đoán Hilbert-Smith).
The language of category theory provides a concise definition for Lie groups: a Lie group is a group object in the category of smooth manifolds. This is important, since it allows generalization of the notion of a Lie group to Lie supergroups.
[sửa] Các ví dụ của các nhóm Lie
Sau đây là một ví dụ của các nhóm Lie và mối quan hệ của chúng đến các ngành khác của toán học và vật lý học.
- Không gian Euclid Rn là một nhóm Lie abelian (với phép cộng vectơ như là phép toán trên nhóm đó).
- Nhóm GLn(R) của các ma trận khả nghịch (dưới phép nhân ma trận) là một nhóm Lie với số chiều là n2, được gọii là nhóm tuyến tính tổng quát. Nó có nhóm con là SLn(R) của các ma trận với định thức bằng 1 cũng là một nhóm Lie, được gọi là nhóm tuyến tính đặc biệt.
- Nhóm trực giao On(R) là một nhóm Lie được biểu diễn bởi các ma trận trực giao. Nó bao gồm các phép quay và các phép phản xạ của một không gian vectơ n-chiều. Nó có một nhóm con SOn(R) của các ma trận với định thức 1, được gọi là nhóm trực giao đặc biệt hay là nhóm quay.
- Nhóm unitary U(n) là một nhóm compact với số chiều n2 biểu diễn bởi các ma trận unitary. Nó có một nhóm con SU(n) với các phần tử với định thức bằng 1, được gọi là nhóm unitary đặc biệt.
- Nhóm spin là các phủ kép (double cover) của nhóm trực giao đặc biệt (special orthogonal group), sử dụng trong việc nghiên cứu fermion trong lý thuyết trường quantum (quantum field theory)
- Nhóm Sp2n(R) của tất cả các ma trận bảo toàn một dạng symplectic là một nhóm Lie gọi là nhóm symplectic.
- Các mặt cầu S0, S1, và S3 có thể được làm thành nhóm Lie bằng cách xác định chúng với số thực, số phức, hay quaternion với giá trị 1. Không có mặt cầu nào khác là nhóm Lie. Nhóm Lie S1 đôi khi được gọi là nhóm hình tròn (circle group).
- Nhóm của các ma trận n nhân n tam giác góc trên (upper triangular n by n matrices) là một nhóm Lie giải được với số chiều bằng n(n + 1)/2.
- Nhóm Lorentz và nhóm Poincare của các isometries của không thời gian là các nhóm Lie 6 và 10 chiều được sử dụng trong thuyết tương đối hẹp.
- Nhóm Heisenberg là một nhóm Lie 3 chiều, sử dụng trong cơ học lượng tử.
- Nhóm U(1)×SU(2)×SU(3) là một nhóm Lie có 1+3+8=12 chiều là một nhóm gauge của standard model, với số chiều tương ứng với 1 photon + 3 vector boson + 8 gluoncủa mẫu chuẩn (standard model).
- Nhóm metaplectic là một nhóm Lie 3 chiều là phủ kép của SL2(R) và được sử dụng trong lý thuyết modular form. Nó không thể được biểu diễn như các ma trận hữu hạn.
- Nhóm Lie ngoại lệ của kiểu G2, F4, E6, E7, E8 có số chiều 14, 52, 78, 133, và 248. Cũng có nhóm E7½ với số chiều 190.
Nhiều ví dụ khác trong bảng các nhóm Lie và danh sách các nhóm Lie đơn và nhóm ma trận.
Có vài cách tiêu chuẩn để tạo thành các nhóm Lie mới dựa trên các nhóm cũ:
- Tích của hai nhóm Lie là một nhóm Lie.
- Any closed subgroup of a Lie group is a Lie group.
- The quotient of a Lie group by a closed normal subgroup is a Lie group.
- The universal cover of a connected Lie group is a Lie group. For example, the group R is the universal cover of the circle group S1.
Vài ví dụ các nhóm không phải là nhóm Lie:
- Nhóm vô hạn chiều, ví dụ như là nhóm dưới phép cộng của một không gian vector vô hạn chiều. Chúng không phải là các nhóm Lie bởi vì chúng không phải là các đa tạp hữu hạn chiều.
- Một số nhóm hoàn toàn rời rạc (totally disconnected), như là nhóm Galois của một mởi rộng vô hạn của các trường, or the additive group of the số p-adic. These are not Lie groups because their underlying spaces are not real manifolds. (Some of these groups are "p-adic Lie groups".)
- The image of a connected Lie group under a homomorphism of Lie groups need not be a Lie group. The usual example of this is the image of R in the group R2/Z2 (≅ S1×S1) under the map x→(x,√2 x). The image is a dense subset of R2/Z2 that is not a manifold, and so is not a Lie group. This also gives an example where a subalgebra of a Lie algebra does not correspond to a Lie subgroup of the corresponding Lie group.
- The group of rational numbers under addition, topologized as a subset of the real numbers, is not a Lie group as it is not a manifold.
[sửa] Types of Lie groups
Lie groups are classified according to their algebraic properties (simple, semisimple, solvable, nilpotent, abelian), their connectedness (connected or simply connected) and their compactness.
- The identity component of any Lie group is an open normal subgroup, and the quotient group is a discrete group.
- The universal cover of any connected Lie group is a simply connected Lie group, and conversely any connected Lie group is a quotient of a simply connected Lie group by a discrete normal subgroup of the center.
- Compact Lie groups are all known: they are finite central extensions of a product of copies of the circle group S1 and simple compact Lie groups (which correspond to connected Dynkin diagrams).
- Any simply connected solvable Lie group is isomorphic to a closed subgroup of the group of invertible upper triangular matrices of some rank, and any finite dimensional irreducible representation of such a group is 1 dimensional. Solvable groups are too messy to classify except in a few small dimensions.
- Any simply connected nilpotent Lie group is isomorphic to a closed subgroup of the group of invertible upper triangular matrices with 1's on the diagonal of some rank, and any finite dimensional irreducible representation of such a group is 1 dimensional. Like solvable groups, nilpotent groups are too messy to classify except in a few small dimensions.
- Simple Lie groups are sometimes defined to be those that are simple as abstract groups, and sometimes defined to be connected Lie groups with a simple Lie algebra. For example, SL2(R) is simple according to the second definition but not according to the first. They have all been classified (for either definition).
- Semisimple Lie groups are connected groups whose Lie algebra is a product of simple Lie algebras. They are central extensions of products of simple Lie groups.
- Connected abelian Lie groups are all isomorphic to products of copies of R and the circle group S1.
[sửa] Structure of a Lie group
Any Lie group G can be decomposed into discrete, simple, and abelian groups in a canonical way as follows. Write
- Gcon for the connected component of the identity
- Gsol for the largest connected normal solvable subgroup
- Gnil for the largest connected normal nilpotent subgroup
so that we have a sequence of normal subgroups
- 1 ⊆ Gnil ⊆ Gsol ⊆ Gcon ⊆ G
Then
- G/Gcon is discrete
- Gcon/Gsol is a central extension of a product of simple connected Lie groups.
- Gsol/Gnil is abelian (and a product of copies of R and S1)
- Gnil/1 is nilpotent, and therefore its ascending central series has all quotients abelian.
This can be used to reduce some problems about Lie groups (such as finding their unitary representations) to the same problems for connected simple groups.
[sửa] The Lie algebra associated to a Lie group
To every Lie group, we can associate a Lie algebra, whose underlying vector space is the tangent space of G at the identity element, which completely captures the local structure of the group. Informally we can think of elements of the Lie algebra as elements of the groups that are "infinitesimally close" to the identity, and the Lie bracket is something to do with the commutator of two such infinitesimal elements. Before giving the abstract definition we give a few examples:
- The Lie algebra of the vector space Rn is just Rn with the Lie bracket given by
-
- [A, B] = 0.
(In general the Lie bracket of a connected Lie group is always 0 if and only if the Lie group is abelian.)
- The Lie algebra of the general linear group GLn(R) of invertible matrices is the vector space Mn(R) of square matrices with the Lie bracket given by
-
- [A, B] = AB − BA
- If G is a closed subgroup of GLn(R) then the Lie algebra of G can be thought of informally as the matrices m of Mn(R) such that 1 + εm is in G, where ε is an infinitesimal positive number with ε2 = 0 (of course no such real number ε exists...). For example, the orthogonal group On(R) consists of matrices A with AAT = 1, so the Lie algebra consists of the matrices m with (1 + εm)(1 + εm)T = 1, which is equivalent to m + mT = 0 because ε2 = 0.
- Formally, when working over the reals, as here, this is accomplished by considering the limit as ε→0; but the "infinitesimal" language generalizes directly to Lie groups over general rings.
The concrete definition given above is easy to work with, but has some minor problems: to use it we first need to represent a Lie group as a group of matrices, but not all Lie groups can be represented in this way, and it is not obvious that the Lie algebra does not depend on which representation we use. To get round these problems we give the general definition of the Lie algebra of any Lie group (in 4 steps):
- Vector fields on any smooth manifold M can be thought of as derivations X of the ring of smooth functions on the manifold, and therefore form a Lie algebra under the Lie bracket [X, Y] = XY − YX, because the Lie bracket of any two derivations is a derivation.
- If G is any group acting smoothly on the manifold M, then it acts on the vector fields, and the vector space of vector fields fixed by the group is closed under the Lie bracket and therefore also forms a Lie algebra.
- We apply this construction to the case when the manifold M is the underlying space of a Lie group G, with G acting on G = M by left translations. This shows that the space of left invariant vector fields on a Lie group is a Lie algebra under the Lie bracket of vector fields.
- Any tangent vector at the identity of a Lie group can be extended to a left invariant vector field by left translating the tangent vector to other points of the manifold. This identifies the tangent space Te at the identity with the space of left invariant vector fields, and therefore makes the tangent space into a Lie algebra, called the Lie algebra of G, usually denoted by a lower case g or a Fraktur .
This Lie algebra is finite-dimensional and it has the same dimension as the manifold G. The Lie algebra of G determines G up to "local isomorphism", where two Lie groups are called locally isomorphic if they look the same near the identity element. Problems about Lie groups are often solved by first solving the corresponding problem for the Lie algebras, and the result for groups then usually follows easily. For example, simple Lie groups are usually classified by first classifying the corresponding Lie algebras.
We could also define a Lie algebra structure on Te using right invariant vector fields instead of left invariant vector fields. This leads to the same Lie algebra, because the inverse map on G can be used to identify left invariant vector fields with right invariant vector fields, and acts as −1 on the tangent space Te.
The Lie algebra structure on Te can also be described as follows : the commutator operation
- (x, y) → xyx−1y−1
on G × G sends (e, e) to e, so its derivative yields a bilinear operation on TeG. This bilinear operation is actually the zero map, but the second derivative, under the proper identification of tangent spaces, yields an operation that satisfies the axioms of a Lie bracket, and it is equal to twice the one defined through left-invariant vector fields.
[sửa] Homomorphisms and isomorphisms
If G and H are Lie groups, then a Lie-group homomorphism f : G → H is a smooth group homomorphism. (It is equivalent to require only that f be continuous rather than smooth.) The composition of two such homomorphisms is again a homomorphism, and the class of all Lie groups, together with these morphisms, forms a category. Two Lie groups are called isomorphic if there exists a bijective homomorphism between them whose inverse is also a homomorphism. Isomorphic Lie groups are essentially the same; they only differ in the notation for their elements.
Every homomorphism f : G → H of Lie groups induces a homomorphism between the corresponding Lie algebras and . The association G is a functor.
One version of Ado's theorem is that every finite dimensional Lie algebra is isomorphic to a matrix Lie algebra. For every finite dimensional matrix Lie algebra, there is a linear group (matrix Lie group) with this algebra as its Lie algebra. So every abstract Lie algebra is the Lie algebra of some (linear) Lie group.
The global structure of a Lie group is not determined by its Lie algebra; for example, if Z is any discrete subgroup of the center of G then G and G/Z have the same Lie algebra (see the table of Lie groups for examples). A connected Lie group is simple, semisimple, solvable, nilpotent, or abelian if and only if its Lie algebra has the corresponding property.
If we require that the Lie group be simply connected, then the global structure is determined by its Lie algebra: for every finite dimensional Lie algebra over F there is a simply connected Lie group G with as Lie algebra, unique up to isomorphism. Moreover every homomorphism between Lie algebras lifts to a unique homomorphism between the corresponding simply connected Lie groups.
[sửa] The exponential map
The exponential map from the Lie algebra Mn(R) of the group GLn(R) to GLn(R) is defined by the usual power series:
for matrices A. If G is any subgroup of GLn(R), then the exponential map takes the Lie algebra of G into G, so we have an exponential map for all matrix groups.
The definition above is easy to use, but it is not defined for Lie groups that are not matrix groups, and it is not clear that the exponential map of a Lie group does not depend on its representation as a matrix group. We can solve both problems using a more abstract definition of the exponential map that works for all Lie groups, as follows.
Every vector v in determines a linear map from R to taking 1 to v, which can be thought of as a Lie algebra homomorphism. Since R is the Lie algebra of the simply connected Lie group R, this induces a Lie group homomorphism c : R → G so that
- c(s + t) = c(s) c(t)
for all s and t. The operation on the right hand side is the group multiplication in G. The formal similarity of this formula with the one valid for the exponential function justifies the definition
- exp(v) = c(1)
This is called the exponential map, and it maps the Lie algebra into the Lie group G. It provides a diffeomorphism between a neighborhood of 0 in and a neighborhood of e in G. This exponential map is a generalization of the exponential function for real numbers (since R is the Lie algebra of the Lie group of positive real numbers with multiplication), for complex numbers (since C is the Lie algebra of the Lie group of non-zero complex numbers with multiplication) and for matrices (since Mn(R) with the regular commutator is the Lie algebra of the Lie group GLn(R) of all invertible matrices).
Because the exponential map is surjective on some neighbourhood N of e, it is common to call elements of the Lie algebra infinitesimal generators of the group G. The subgroup of G generated by N is the identity component of G.
The exponential map and the Lie algebra determine the local group structure of every connected Lie group, because of the Baker-Campbell-Hausdorff formula: there exists a neighborhood U of the zero element of , such that for u, v in U we have
- exp(u) exp(v) = exp(u + v + 1/2 [u, v] + 1/12 [[u, v], v] − 1/12 [[u, v], u] − ...)
where the omitted terms are known and involve Lie brackets of four or more elements. In case u and v commute, this formula reduces to the familiar exponential law exp(u) exp(v) = exp(u + v).
The exponential map from the Lie algebra to the Lie group is not always onto, even if the group is connected (though it does map onto the Lie group for connected groups that are either compact or nilpotent). For example, the exponential map of SL2(R) is not surjective.
[sửa] Infinite dimensional Lie groups
Lie groups are finite dimensional by definition, but there are many groups that resemble Lie groups, except for being infinite dimensional. There is very little "general theory" of such groups, but some of the examples that have been studied include:
- The group of diffeomorphisms of a manifold. Quite a lot is known about the group of diffeomorphisms of the circle. Its Lie algebra is (more or less) the Witt algebra, which has a central extension called the Virasoro algebra, used in string theory and conformal field theory. Very little is known about the diffeomorphism groups of manifolds of larger dimension. The diffeomorphism group of spacetime sometimes appears in attempts to quantize gravity.
- The group of smooth maps from a manifold to a finite dimensional group is called a gauge group, and is used in quantum field theory and Donaldson theory. If the manifold is a circle these are called loop groups, and have central extensions whose Lie algebras are (more or less) Kac-Moody algebras.
- There are infinite dimensional analogues of general linear groups, orthogonal groups, and so on. One important aspect is that these may have simpler topological properties: see for example Kuiper's theorem.
- Just as calculus in finite-dimensional real vector spaces can be extended to calculus in Banach spaces, the definition of finite-dimensional smooth manifolds can be extended to give a definition of Banach analytic manifolds. Similarly, the standard finite-dimensional definition of Lie groups can be extended to give a definition of Banach analytic Lie groups. In this case, we have a Banach analytic manifold which simultaneously has a group structure such that multiplication and inversion are analytic maps. Some of the theorems of finite-dimensional Lie groups do not carry over to the Banach analytic case, and in particular the relation between Lie groups and Lie algebras is much more subtle in the infinite dimensional case. However, it is true that "for infinite dimensional Lie groups modeled on Banach spaces there is a well-developed theory ... which is closely parallel to the theory of finite dimensional Lie groups."[1]
[sửa] See also
- E8
- Adjoint representation
- Armand Borel
- Homogeneous space
- List of Lie group topics
- List of simple Lie groups
- Riemannian manifold
- Representations of Lie groups
- Table of Lie groups
[sửa] References
- Armand Borel, Essays in the history of Lie groups and algebraic groups, History of Mathematics 21, American Mathematical Society, 2001. ISBN 0-8218-0288-7
- Thomas Hawkins, Emergence of the theory of Lie groups, Springer, 2000. ISBN 0-387-98963-3
- Brian C. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, 2003. ISBN 0-387-40122-9
- N. Bourbaki, Elements of mathematics: Lie groups and Lie algebras Chapter 1-3 ISBN 3-540-64242-0, Chapters 4-6 ISBN 3-540-42650-7, Chapters 7-9 ISBN 3-540-43405-4
- C. Chevalley, Theory of Lie groups, ISBN 0-691-04990-4.
- J.-P. Serre. Lie Algebras and Lie Groups: 1964 Lectures given at Harvard University, LNM 1500, Springer. ISBN 3-540-55008-9
- Anthony W. Knapp, Lie Groups Beyond an Introduction, Second Edition. Birkhäuser, 2002.
- J.F. Adams, Lectures on Lie Groups (Chicago Lectures in Mathematics). ISBN 0-226-00527-5
- Representation Theory : A First Course (Graduate Texts in Mathematics / Readings in Mathematics) by William Fulton, Joe Harris Publisher: Springer; 1 edition (July 30, 1999) ISBN 0-387-97495-4
- Wulf Rossmann, Lie Groups: An Introduction Through Linear Groups (Oxford Graduate Texts in Mathematics), Oxford University Press ISBN 0-19-859683-9. The 2003 reprinting corrects some unfortunate typos.
[sửa] Notes
- ^ Andrew Pressley and Graeme Segal, Loop Groups, Oxford Science Publications, 1986, page 26.