See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Skladnost (geometrija) - Wikipedija, prosta enciklopedija

Skladnost (geometrija)

Iz Wikipedije, proste enciklopedije

Lika sta skladna, ker lahko preslikamo enega na drugega s togim premikom
Lika sta skladna, ker lahko preslikamo enega na drugega s togim premikom

Skládnost (redko kongruénca) v geometriji pomeni, da imata dve množici točk enako obliko in velikost. Matematična definicija skladnosti je povezana s togimi premiki (s preslikavami, ki ohranjajo razdalje):

Množici točk sta skladni, če lahko preslikamo eno na drugo s togim premikom tako, da se popolnoma prekrijeta.

Dejstvo, da sta množici A in B skladni, zapišemo kot: A\cong B.

Skladnost preučujemo v ravninski geometriji zlasti pri likih. Skladna lika imata enako obliko, enako dolge stranice, enako velike kote in enako ploščino.

V prostorski geometriji preučujemo skladnost zlasti pri telesih. Skladni telesi imata enako dolge robove, enako površino in enako prostornino.

[uredi] Načela skladnosti trikotnikov

V praksi je marsikdaj težko ugotoviti, ali se da neki lik preslikati na drugega s togim premikom. Za ugotavljanje skladnosti trikotnikov si pomagamo z naslednjimi načeli skladnosti:

  • Načelo SSS (načelo stranica-stranica-stranica): Trikotnika sta skladna, če se ujemata v dolžinah vseh treh stranic.
  • Načelo SKS (načelo stranica-kot-stranica): Trikotnika sta skladna, če se ujemata v dolžinah dveh stranic in v kotu med njima.
  • Načelo KSK (načelo kot-stranica-kot): Trikotnika sta skladna, če se ujemata v dveh kotih in v dolžini stranice med njima. To načelo velja celo v splošnejši obliki: Trikotnika sta skladna, če se ujemata v dveh kotih in v dolžini poljubne stranice.
  • Načelo SsK (načelo večja stranica-manjša stranica-kot): Trikotnika sta skladna, če se ujemata v dolžinah dveh stranic in v kotu, ki leži nasproti daljši od teh dveh stranic.

Pri tem velja posebej opozoriti na situacije, ko ne moremo sklepati, da gre za skladnost (vsaj v običajni evklidski geometriji ne):

  • Trikotnika, ki se ujemata v dolžinah dveh stranic in v kotu, ki leži nasproti krajši od teh dveh stranic, nista nujno skladna.
  • Trikotnika, ki se ujemata v vseh treh kotih, nista nujno skladna (taka trikotnika sta podobna).

[uredi] Glej tudi


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -