ドップラー効果
出典: フリー百科事典『ウィキペディア(Wikipedia)』
ドップラー効果(ドップラーこうか)とは、波(音波や光波や電波など)の発生源(音源・光源など)と観測者との相対的な速度によって、波の周波数が異なって観測される現象のこと。発生源が近付く場合には波の振動が詰められて周波数が高くなり、逆に遠ざかる場合は振動が伸ばされて低くなる。
例えば、救急車などが通り過ぎる際、近付くときにはサイレンの音が高く聞こえ、遠ざかる時には低く聞こえるのはこの現象によるものである。
音についてのこの現象は古くから知られていたが、オーストリアの物理学者、クリスチャン・ドップラーが速度と周波数の間の数学的な関係式を1842年に見出し、オランダ人の化学者・気象学者であるクリストフ・バイス=バレット(Christophorus Buys-Ballot、1817年10月10日-1890年2月3日)が、1845年オランダのユトレヒトで、列車に乗ったトランペット奏者がGの音を吹き続け、それを絶対音感を持った音楽家が聞いて音程が変化する事で証明した。
観測者も音源も同一直線状を動き、音源S(Source)から観測者O(Observer)に向かう向きを正とすると、観測者に聞こえる音波の振動数は、
となる。ここで、f : 音源の出す音波の周波数、V : 音速、v0 : 観測者の動く速度、vs : 音源の動く速度
[編集] 光のドップラー効果
光の場合でも同様の効果が観測され、遠ざかる光源からの光は赤っぽく見え(赤方偏移)、近付く光源からの光は青っぽく見える(青方偏移)。しかし、光の伝播は特殊相対性理論に従うため、通常の波のドップラー効果とは違った現象を見せる。
そもそもドップラー効果の原因は、波源や観測者が波の媒質に対して速度を持つために波の山の間隔が変わる所にあるが、光は波源や観測者の速度によらず常に光速 c で伝播するように観測されるので、山の間隔の変わり方が通常の波の場合とは異なってくる。また、光の場合、波源が運動していると、特殊相対論的な効果によって波源上での時間の進み方が遅れて観測される。これによって波源から出る光の振動数が小さく観測される効果が付け加わる。
以上の効果によって、光源Sが観測者Oから見て角度θの方向に速さVで運動している場合、Oでの光の振動数ν'は、
となる。ここで、ν : 光源の出す光の振動数、V : 観測者から見た光源の速さ、c : 光速、θ : 観測者から見た光源の動く方向(θ=0:観測者に向かってくる場合)
重要なのは、光の場合には光源が観測者の視線方向に対して垂直に運動していて、視線方向の速度を持っていない場合(θ=90°)でも光の振動数が変化して見えることである。これを横ドップラー効果という。
実際の活用法としては、恒星などの天体の可視光スペクトルに見られる吸収線(フラウンホーファー線)の波長の理論値とのズレ(ドップラー・シフト)から、地球とその天体との相対速度を算出する事が出来る。また同じ電磁波におけるドップラー効果を利用したものとしてドップラー・レーダーがある。
光のドップラー効果は星虹(スターボウ)として観測が可能であるという説がある。
[編集] 関連項目