Spazio di probabilità
Da Wikipedia, l'enciclopedia libera.
In matematica, uno spazio di probabilità è una struttura utilizzata per formalizzare i concetti relativi alla probabilità. Esso è un caso particolare di spazio di misura, e consente di definire con rigore matematico tutte le nozioni della teoria della probabilità.
La struttura di spazio di probabilità è stata introdotta da Andrey Nikolaevich Kolmogorov negli anni '30, nell'ambito di una serie di lavori del matematico russo che hanno posto i fondamenti dell'intera teoria della probabilità.
[modifica] Definizione
Uno spazio di probabilità è una terna dove Ω è un insieme non vuoto, è una σ-algebra su Ω e è una misura positiva tale che (detta misura di probabilità). Più brevemente, uno spazio di probabilità è uno spazio di misura positiva, tale che l'intero spazio abbia misura 1.
[modifica] Esempi
- Da ogni spazio di misura finita si può ottenere uno spazio di probabilità semplicemente "normalizzando" la misura, cioè introducendo la nuova misura μ'(A) = μ(A) / μ(Ω).
[modifica] Applicazioni
Per approfondire, vedi le voci spazio campionario, variabile casuale, processo stocastico e valore atteso. |
- Portale Matematica: accedi alle voci di Wikipedia che parlano di matematica