ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Rhind-papirusz - Wikipédia

Rhind-papirusz

A Wikipédiából, a szabad enciklopédiából.

Részletek a Rhind-papiruszról
Részletek a Rhind-papiruszról

A Rhind-papirusz egy óegyiptomi, számtannal és mértannal foglalkozó papirusztekercs, amelyet Jahmesz (Ahmesz) írnok készített Kr. e. 1750 táján. Nevét felfedezőjéről, Henry Rhind skót régiségkereskedőről kapta. Írójáról szokás még Ahmesz-papirusznak is nevezni. Ez a mű az elsőként megismert, ókori egyiptomi matematikával foglalkozó írás.

Tartalomjegyzék

[szerkesztés] Felfedezése

1858-ban Rhind skót régiségkereskedő Egyiptomban járt, hogy tüdőbetegségét gyógyíttassa. Luxorban megpillantott és megvett egy szokatlanul nagy, de sérült papirusztekercset, amelyet Thébában találtak. A tekercs később a British Museumba került. A hiányzó részt 50 évvel később találták meg egy amerikai történelmi gyűjteményben.

[szerkesztés] Kora

Az írás bevezetőjében Jahmesz királyi írnok a következőket mondta: „Ezt az iratot a 33. uralkodási évben, az áradás évszak 4. hónapjában (őfelsége Felső-) és Alsó-Egyiptom királya Aauszerré (Apóphis) alatt – aki élettel legyen megáldva – másolták régi iratok alapján. Készíttetett Felső- és Alsó-Egyiptom királya Nimaatré (III. Amenemhat) alatt”[1]

Tehát az eredeti irat a Középbirodalomban uralkodó fáraó idejében készült. (Kr. e. 1878-Kr. e. 1840) Valószínűleg még korábbi ismereteket foglalt össze, így keletkezését sokan Kr. e. 2000 tájára teszik.

[szerkesztés] Jahmesz, az írnok

Királyi írnokként nagy tudású gyakorlati szakember volt, aki urának parancsait teljesítve; gazdasági, műszaki, szervezési és számolási feladatokat látott el. Jahmesz, nem biztos, hogy a legkiválóbb matematikus volt, mivel a papiruszon több matematikai hibát is vétett. Bár az is lehet, hogy a régi írást másolta betűről-betűre és nem akarta meghamisítani az elődök munkáját.

[szerkesztés] A papirusz tartalma

A hétköznapi élettel összefüggő számolási, és geometriai feladatokat írtak a tekercsre. A 85 példa számolástechnikai ismeretetés, egyszerű egyenletek megoldása, terület-, és térfogatszámítási feladat volt.
A „tankönyv” ismertette, hogyan lehet kiszámítani; a trapéz területét, a számtani és mértani sorozatokat, elsőfokú egyismeretlenes egyenleteket. A papiruszon vannak 3, 4 és 5 egységoldalú háromszögek, de nem mondták ki, hogy derékszögű háromszögek.

Példák és megoldások
Az egyiptomiak az alapműveleteket igyekeztek összeadásra visszavezetni. Így a szorzást kétszerezéssel végezték el:


Szorzás:12x12
1x12=12
2x12=24
4x12=48 –
8x12=96 –
Amikor eddig elértek, akkor észre vették, hogy a 12x12, az 4x12 és a 8x12 összege, és összeadták a „–”-szal megjelölteket: 48+96=144


Osztás: 1120:80
„Adj össze 80-tól kezdve, míg 1120-at kapsz!”
Megoldás:
1x80=80
2x80=160 –
4x80=320 –
8x80=640 –
A következő már túl vinne az 1120-on. Észrevehető, hogy 160+320+640=1120, tehát a helyes hányados a „–”-szal megjelölt sorokból leolvasható: 2+4+8=14
1120:80=(160+320+640):80=2+4+8=14

Jahmesz bizonyítás nélkül kijelentette, hogy a 9 egységnyi átmérőjű kör területe egyenlő a 8 egységnyi oldalú négyzet területével. Ez mai jelöléssel azt jelenti, hogy

π(9/2)² = 8²

ahonnan a pi értékére körülbelül 3.16 jön ki, ami két századnyira közelíti meg a valódi értéket.

[szerkesztés] Forrás

[szerkesztés] Jegyzet

  1. ^ Idézi: * Sain Márton: Nincs királyi út – Matematikatörténet Gondolat, Budapest 1986. (37-38. p.) ISBN 963-281-7044


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -