משוואת לפלס
מתוך ויקיפדיה, האנציקלופדיה החופשית
משוואת לפלס היא משוואה דיפרנציאלית חלקית מהצורה כאשר הוא אופרטור הלפלסיאן.
המשוואה קרויה על שם המתמטיקאי הצרפתי פייר סימון לפלס ויש לה שימושים רבים בפיזיקה.
פונקציה המקיימת את משוואת לפלס נקראת פונקציה הרמונית.
[עריכה] תכונות של משוואת לפלס בשני ממדים
משוואת לפלס סימטרית במקרים הבאים:
- ביחס להזזה של הצירים, כלומר אם הרמונית, גם הרמונית;
- ביחס לסיבוב של הצירים, כלומר אם הרמונית, גם הרמונית;
- ביחס לנירמול המשתנים, כלומר אם הרמונית, גם הרמונית.
כאשר כולם קבועים.
[עריכה] שימושים בפיזיקה
משוואת לפלס מופיעה בתחומים שונים בפיזיקה, לדוגמה:
- פוטנציאל חשמלי באזור ריק ממטענים, מקיים את משוואת לפלס.
- התפלגות הטמפרטורה של גוף במצב יציב מקיימת את משוואת לפלס.