Transit de Vénus
Un article de Wikipédia, l'encyclopédie libre.
On appelle transit de Vénus le passage de la planète Vénus exactement entre la Terre et le Soleil, occultant une petite partie du disque solaire. Pendant le transit, Vénus peut être observée depuis la Terre sous la forme d'un petit disque noir se déplaçant devant le Soleil. La durée de tels transits est en général de quelques heures (celui de 2004 dura 6 heures). Un transit est similaire à une éclipse solaire par la Lune, mais bien que Vénus fasse presque quatre fois la taille de la Lune, elle apparaît bien plus petite du fait de la distance plus importante qui la sépare de la Terre. Avant l'ère spatiale, l'observation de transits de Vénus servit aux scientifiques pour calculer la distance Terre-Soleil par la méthode des parallaxes.
Les transits de Vénus font partie des phénomènes astronomiques prévisibles les moins fréquents et se produisent actuellement suivant une séquence qui se répète tous les 243 ans, avec des paires de transits espacés de 8 ans suivis de longs intervalles de 121,5 et 105,5 ans. Avant 2004, la paire de transit précédente date de décembre 1874 et décembre 1882. Le premier de la paire de transits du début du XXIe siècle a eu lieu le 8 juin 2004 (voir Transit de Vénus de 2004) et le suivant aura lieu le 6 juin 2012 (voir Transit de Vénus de 2012). Après 2012, les prochains transits auront lieu en 2117 et 2125[1].
Un transit de Vénus peut être observé en toute sécurité avec les mêmes précautions que pour l'observation des phases partielles d'une éclipse solaire. Fixer le disque solaire sans protection entraîne rapidement des dégâts oculaires sérieux et parfois des lésions permanentes[2].
Sommaire |
[modifier] Conjonctions
Normalement, quand Vénus et la Terre sont en conjonction, elles ne sont pas alignées avec le Soleil. L'orbite de Vénus est inclinée de 3,4° par rapport à celle de la Terre et passe donc en dessous (ou au dessus) du Soleil dans le ciel[3]. Observée depuis la Terre, Vénus en conjonction inférieure peut être écartée jusqu'à 9,6° du Soleil bien que l'inclinaison ne soit que de 3,4°. Comme le diamètre angulaire du Soleil est d'environ 1/2 degré, Vénus passe alors au dessus ou en dessous du Soleil à plus de 18 diamètres solaires[3]. Le transit advient quand les deux planètes sont en conjonction au moment (ou presque au moment) où elles croisent la ligne d'intersection de leurs plans orbitaux.
Les transits se répètent suivant une séquence de 243 ans avec une paire de transits séparés de 8 ans suivis d'un intervalle de 121,5 ans, une autre paire de transits séparés de 8 ans et un intervalle de 105,5 ans. Cette période de 243 ans provient du fait que 243 années sidérales (365,25636 jours, un peu plus que l'année tropique) fait 88757,3 jours et 395 années sidérales de Vénus (224,701 jours) fait 88757,9 jours. Ainsi, après cette période, Vénus et la Terre sont revenues quasiment aux mêmes positions sur leur orbite. Cette période correspond à 152 périodes synodiques de Vénus[4].
La séquence 105,5 / 8 / 121,5 / 8 n'est pas la seule possible dans la période de 243 ans à cause du léger décalage entre la conjonction et le passage à la ligne des nœuds. Avant 1518, il n'y avait que trois transits tous les 243 ans suivant la séquence 8 / 113,5 / 121,5, et les huit transits précédant celui de l'an 546 étaient espacés de 121,5 ans. La séquence actuelle continuera jusqu'en 2846 et sera alors remplacée par la séquence 105,5 / 129,5 / 8. Ainsi, la période de 243 ans est relativement stable mais le nombre de transits et leur espacement pendant cette période change au cours des âges[4][5].
[modifier] Histoire ancienne
Dans l'antiquité, les astronomes grecs, égyptiens, babyloniens et chinois connaissaient Vénus et notaient ses mouvements. Les Grecs anciens pensaient que les apparitions matinales et vespérales de Vénus correspondaient à deux objets différents, Hesperus l'étoile du soir et Phosphorus l'étoile du matin[6]. On attribue à Pythagore la découverte qu'il s'agissait de la même planète. Au IVe siècle av. J.-C., Héraclide du Pont émis l'hypothèse que Vénus et Mercure orbitaient autour du Soleil et non de la Terre. Aucun élément ne permet d'affirmer que ces cultures connaissaient les transits[7].
Vénus était importante pour les civilisations précolombiennes, en particulier pour les Mayas qui la nommaient Chak ek, « la grande étoile »[6] et lui accordaient peut-être plus d'importance qu'au Soleil ; ils identifiaient Vénus au dieu Kukulkan (équivalent maya de Quetzalcoatl) et basaient leur calendrier essentiellement sur les cycles de Vénus. Dans le Codex de Dresde, les Mayas tracèrent le cycle complet de Vénus, mais malgré leur connaissance précise de ses mouvements, ils ne mentionnent pas le transit[8].
[modifier] Observations modernes
En dépit de sa rareté, l'intérêt de l'observation d'un transit de Vénus est qu'il permet de calculer la taille du système solaire en employant la méthode des parallaxes. La technique consiste à mesurer la légère différence de l'heure de début (ou de fin) du transit observé depuis des points très éloignés de la surface terrestre. L'écart entre les lieux d'observation permet de calculer la distance Soleil-Vénus par triangulation[9].
Bien qu'au XVIIe siècle les astronomes savaient calculer les distances relatives de chaque planète par rapport au Soleil en terme de distance Terre-Soleil (c'est-à-dire en unité astronomique), cette unité de base n'avait jamais été précisément mesurée.
Johannes Kepler fut le premier à prédire un transit de Vénus pour 1631, mais il ne fut pas observé car la prédiction de Kepler n'était pas assez précise pour déterminer que le transit ne serait pas visible depuis la plupart de l'Europe[10].
La première observation d'un transit de Vénus fut faite par Jeremiah Horrocks depuis son domicile de Much Hoole près de Preston en Angleterre, le 4 décembre 1639 (le 24 novembre selon le calendrier julien alors en vigueur dans ce pays). Son ami William Crabtree observa le transit depuis Salford près de Manchester. Kepler avait prédit les transits de 1631 et 1761 et un frôlement en 1639. Horrocks corrigea les paramètres orbitaux de Vénus établis par Kepler et remarqua que les transits de Vénus auraient lieu par paire séparée de 8 ans et put ainsi prédire celui de 1639. Bien qu'il ne fut pas certain de l'heure exacte, il calcula que le transit commencerait approximativement à 15h. Horrocks focalisa l'image du Soleil sur un morceau de carton à l'aide d'un simple télescope pour l'observer en toute sécurité. Après avoir attendu toute la journée, il eut la chance de voir le transit alors que les nuages qui masquaient le Soleil se dégagèrent à 15h15, juste une heure avant le coucher de Soleil. Ses mesures lui permirent de faire des estimations soutenables aussi bien sur la taille de Vénus que sur la distance Terre-Soleil. Son estimation de la distance Terre-Soleil fut de 95,6 Gm (59,4 milliards de milles, soit 0,639 ua) — à peu près les deux tiers de la distance réelle, mais la mesure la plus précise de l'époque. Cependant, les observations de Horrocks ne furent publiées qu'en 1661, bien après sa mort[11].
En s'appuyant sur l'observation du transit de Vénus de 1761 depuis l'observatoire de Saint-Pétersbourg, Mikhaïl Lomonossov prédit l'existence d'une atmosphère sur cette planète. Lomonossov détecta la réfraction des rayons solaires et en déduisit que seule la présence d'une atmosphère pouvait expliquer l'apparition d'un anneau de lumière autour de la partie de Vénus qui n'était pas encore en contact avec le disque solaire au début du transit[12].
La paire de transits de 1761 et 1769 fut utilisée pour calculer précisément la valeur de l'unité astronomique par la méthode des parallaxes décrite par James Gregory dans Optica Promota en 1663. Suivant la proposition faite par Edmond Halley (alors décédé depuis près de vingt ans)[9], de nombreuses expéditions furent organisées vers divers endroits du monde pour observer ces transits ; préfigurant les futures collaborations scientifiques internationales. Afin d'observer le premier transit, des scientifiques et explorateurs britanniques, autrichiens et français partirent vers des destinations telles que la Sibérie, la Norvège, Terre-Neuve et Madagascar[13]. La plupart réussirent à observer au moins une partie du transit, mais le meilleur résultat fut obtenu par Jeremiah Dixon et Charles Mason au Cap de Bonne-Espérance[14]. Pour le transit de 1769, les scientifiques allèrent dans la baie d'Hudson, en Basse-Californie (alors gouvernée par l'Espagne) et en Norvège en plus du premier voyage du capitaine Cook destiné à mener cette observation depuis Tahiti[15]. L'astronome tchèque Christian Mayer fut invité par Catherine II de Russie pour observer le transit depuis Saint-Pétersbourg, mais ses observations furent surtout gênées par les nuages[16]. L'infortuné Guillaume Le Gentil passa huit ans à voyager pour tenter d'observer les deux transits ; son échec lui fit perdre femme et possessions et il fut même déclaré mort (son histoire devint la trame de la pièce Le Transit de Vénus de Maureen Hunter)[13].
Malheureusement, il fut impossible de dater précisément le début ou la fin du transit à cause du « phénomène de la goutte noire ». Cet effet fut longtemps attribué à l'épaisse couche atmosphérique de Vénus, et était alors considéré comme la première preuve de l'existence de cette atmosphère. Cependant, les études récentes ont démontré que cet effet était une déformation de l'image causée par les turbulences atmosphériques terrestres ou les imperfections des appareils optiques[17][18].
En 1771, en recoupant les données des transits de 1761 et 1769, l'astronome français Jérôme Lalande établit la valeur de l'unité astronomique à 153 millions de kilomètres (±1 million). La précision fut moins bonne qu'escompté à cause du phénomène de la goutte noire, mais constituait une amélioration considérable par rapport aux calculs de Horrocks[13]. L'observation des transits de 1874 et 1882 permit d'affiner ce résultat. L'astronome américain Simon Newcomb recoupa les données des quatre derniers transits et en déduisit une valeur de 149,9±0,31 Gm. Les techniques modernes utilisant des sondes spatiales et la télémétrie radar ont permis de calculer la valeur de l'unité astronomique avec une précision de 30 m et rendent obsolète la méthode des parallaxes dans ce cadre[13][18].
Le transit de 2004 suscita néanmoins l'intérêt des scientifiques qui mesurèrent les caractéristiques de la diminution de luminosité du Soleil occulté par Vénus, afin d'améliorer les techniques qu'ils comptent mettre en œuvre dans la recherche d'exoplanètes[18][19]. Les méthodes de détection originelles se concentrent sur les exoplanètes très massives (plus semblables à Jupiter qu'à la Terre), dont la gravité est suffisante pour faire osciller son étoile de façon mesurable au niveau de son mouvement propre, de sa vitesse radiale ou de l'effet Doppler-Fizeau. Mesurer la baisse d'intensité lumineuse au cours d'un transit est potentiellement plus sensible et permettrait de détecter des planètes plus petites[18]. Cependant, ces mesures requièrent une précision extrême, par exemple, le transit de Vénus provoque une diminution d'intensité du rayonnement solaire que d'à peine 0,001 magnitude, et l'effet du transit des petites exoplanètes devrait être aussi faible[20].
[modifier] Transits passés et futurs
Les transits se déroulent actuellement en juin ou décembre (voir la table). Ces dates avancent lentement dans les saisons ; avant 1631 ils se passaient en mai et novembre[4]. Les transits arrivent en général par paire, espacés de huit ans car la durée de huit années terrestres correspond quasiment avec 13 années de Vénus, ce qui ramène les planètes dans les mêmes positions relatives au bout de cette période. Cette coïncidence explique les transits par paire, mais n'est pas assez précise pour engendrer des triplets car Vénus prend 22 heures d'avance à chaque transit[4]. Le dernier transit qui n'est pas arrivé par paire remonte à 1153, le prochain sera en 3089.
Transits de Vénus | |||||
---|---|---|---|---|---|
Date du milieu du transit |
Heure (UTC) | Notes | Tracé (HM Nautical Almanac Office) |
||
Début | Milieu | Fin | |||
7 décembre 1631 | 03:51 | 05:19 | 06:47 | Prédit par Kepler | [1] |
4 décembre 1639 | 14:57 | 18:25 | 21:54 | Premier transit observé par Horrocks et Crabtree | [2] |
6 juin 1761 | 02:02 | 05:19 | 08:37 | Lomonossov observe l'atmosphère de Vénus | [3] |
3 juin 1769 | 19:15 | 22:25 | 01:35 | Expédition du capitaine Cook à Tahiti | [4] |
9 décembre 1874 | 01:49 | 04:07 | 06:26 | Expédition de Pietro Tacchini à Muddapur, en Inde. | [5] |
6 décembre 1882 | 13:57 | 17:06 | 20:15 | John Philip Sousa compose la marche Le Transit de Vénus à cette occasion[18]. | [6] |
8 juin 2004 | 05:13 | 08:20 | 11:26 | Transit largement diffusé en vidéo par divers médias. | [7] |
Transits de Vénus | |||||
---|---|---|---|---|---|
Date du milieu du transit |
Heure (UTC) | Notes | Tracé (HM Nautical Almanac Office) |
||
Début | Milieu | Fin | |||
6 juin 2012 | 22:09 | 01:29 | 04:49 | Entièrement visible depuis Hawaii, l'Australie, le Pacifique et l'Asie orientale. Début du transit visible en Amérique du Nord. |
[8] |
11 décembre 2117 | 23:58 | 02:48 | 05:38 | Entièrement visible depuis la Chine orientale, le Japon, Taïwan, l'Indonésie et l'Australie. Partiellement visible depuis la côte ouest des États-Unis, l'Inde, la plupart de l'Afrique et le Moyen-Orient. |
[9] |
8 décembre 2125 | 13:15 | 16:01 | 18:48 | Entièrement visible depuis l'Amérique du Sud et l'Est des États-Unis. Partiellement visible depuis l'ouest des États-Unis, l'Europe et l'Afrique. |
[10] |
11 juin 2247 | 08:42 | 11:33 | 14:25 | Entièrement visible depuis l'Afrique, l'Europe et le Moyen-Orient. Partiellement visible depuis l'Asie orientale, l'Indonésie et les Amériques. |
[11] |
9 juin 2255 | 01:08 | 04:38 | 08:08 | Entièrement visible depuis la Russie, l'Inde, la Chine et l'Australie occidentale. Partiellement visible depuis l'Afrique, l'Europe et l'ouest des États-Unis. |
[12] |
13 décembre 2360 | 22:32 | 01:44 | 04:56 | Entièrement visible depuis l'Australie et la plupart de l'Indonésie. Partiellement visible depuis l'Asie, l'Afrique et la partie ouest des Amériques. |
[13] |
10 décembre 2368 | 12:29 | 14:45 | 17:01 | Entièrement visible depuis l'Amérique du Sud, l'Afrique occidentale et la côte est des États-Unis. Partiellement visible depuis l'Europe, l'ouest des États-Unis et le Moyen-Orient. |
[14] |
12 juin 2490 | 11:39 | 14:17 | 16:55 | Entièrement visible depuis la plupart des Amériques, l'Afrique occidentale et l'Europe. Partiellement visible depuis l'Afrique orientale, le Moyen-Orient et l'Asie. |
[15] |
10 juin 2498 | 03:48 | 07:25 | 11:02 | Entièrement visible depuis la plupart de l'Europe, l'Asie le Moyen-Orient et l'Afrique orientale. Partiellement visible depuis l'est des Amériques, l'Indonésie et l'Australie. |
[16] |
[modifier] Frôlements et transits simultanés
Parfois, Vénus ne fait que frôler le disque solaire durant un transit. Dans ce cas, il est possible que certaines régions de la Terre ne voient qu'un transit partiel (pas de second ni de troisième contact) tandis que ce transit est vu complet depuis d'autres régions. Le dernier transit de ce type date du 7 décembre 1631 et le prochain est pour le 13 décembre 2611[4].
De même, il est possible que le transit soit partiellement visible depuis certaines régions tandis qu'il ne sera pas observable (de peu !) depuis d'autres. La dernière occurrence d'un tel cas remonte au 19 novembre 541 av. J.-C. et la prochaine est pour le 14 décembre 2854[4]. Ce transit de 2854 (le second de la paire 2846 / 2854), ne pourra pas être observé depuis le centre de la face éclairée de la Terre, il ne sera partiellement visible que depuis une partie de l'hémisphère Sud[21].
L'occurrence simultanée d'un transit de Mercure et d'un transit de Vénus est possible mais dans un futur très lointain. Le prochain est prévu pour le 26 juillet 69 163, puis en l'an 224 508[22][23].
L'occurrence simultanée d'une éclipse solaire avec un transit de Vénus est possible mais très rare, la prochaine éclipse simultanée avec un transit de Vénus est prévue le 5 avril 15 232[22].
Le lendemain du transit du 3 juin 1769, il y a eu une éclipse totale de Soleil [17] visible depuis l'Amérique du Nord, l'Europe et le nord de l'Asie[24].
[modifier] Observation
Le moyen d'observation le plus sûr est de projeter l'image du Soleil à l'aide d'un télescope, de jumelles ou d'un carton percé d'un trou. Mais le phénomène peut aussi être regardé directement grâce à des filtres appropriés tels qu'un filtre solaire d'astronomie revêtu d'une couche de chrome, des lunettes d'observation d'eclipse solaire ou des lunettes de soudure d'indice 14.
L'ancienne méthode consistant à utiliser un négatif photo noir & blanc exposé n'est plus considérée comme sûre : les petites imperfections ou perforations du film laissent passer les UV nocifs. De même, un négatif couleur ne contient pas d'argent et est donc transparents aux rayons infrarouges qui peuvent brûler la rétine. Regarder directement le Soleil sans protection peut provoquer une perte temporaire ou permanente des fonctions visuelles en endommageant ou détruisant les cellules rétiniennes[2][25].
Pour l'astronome amateur, il y a quatre moments intéressants durant un transit, quand la circonférence de Vénus est tangente à celle du disque solaire :
- 1er contact : Vénus complétement hors du disque solaire et se dirigeant vers lui
- 2e contact : Vénus dans le disque solaire et se dirigeant vers l'intérieur
- 3e contact : Vénus dans le disque solaire et se dirigeant vers l'extérieur
- 4e contact : Vénus complétement hors du disque solaire et s'éloignant de lui[2]
Un cinquième point remarquable concernant les transits les plus longs est le moment où Vénus est au milieu de son chemin à travers le disque solaire, indiquant ainsi que la moitié de la durée du transit est écoulée[2].
[modifier] Voir aussi
[modifier] Notes et références
- ↑ (en) John E. Westfall, « June 8, 2004: The Transit of Venus », 2003. Consulté le 11/06/2007
- ↑ a b c d (en) Transit of Venus - Safety, University of Central Lancashire. Consulté le 11/06/2007
- ↑ a b (en) Venus compared to Earth, 2000, European Space Agency. Consulté le 11/06/2007
- ↑ a b c d e f (en) Fred Espenak, « Transits of Venus, Six Millennium Catalog: 2000 BCE to 4000 CE », 2004, NASA. Consulté le 11/06/2007
- ↑ (en) John Walker, « Transits of Venus from Earth », Fourmilab Switzerland. Consulté le 11/06/2007
- ↑ a b (en) Paul Rincon, « Planet Venus: Earth's 'evil twin' », 2005, BBC. Consulté le 12/06/2007
- ↑ (en) J.J. O'Connor et E.F. Robertson, « Heraclides of Pontus », 1999. Consulté le 12/06/2007
- ↑ (en) Bohumil Böhm et Vladimir Böhm, « The Dresden Codex — the Book of Mayan Astronomy ». Consulté le 12/06/2007
- ↑ a b (en) Edmond Halley, A New Method of Determining the Parallax of the Sun, or His Distance from the Earth, Sec. R. S., N0 348 (Philosphical Transactions), vol. XXIX, 1716, 454 p.
- ↑ (en) 1631 Transit of Venus, 2004. Consulté le 12/06/2007
- ↑ (en) Paul Marston, Jeremiah Horrocks - young genius and first Venus transit observer, University of Central Lancashire, 2004, p. 14-37
- ↑ (en) Mikhail Ya. Marov, « Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit », dans Proceedings of the International Astronomical Union (Cambridge University Press), 2004, p. 209-219
- ↑ a b c d (en) Prof. Richard Pogge, « How far to the sun? The Venus Transits of 1761 & 1769 ». Consulté le 13/06/2007
- ↑ (en) National Dictionary of Biography - Biography of Jeremiah Dixon, Oxford University Press. Consulté le 13/06/2007
- ↑ (en) Ernest Rhys, The Voyages of Captain Cook, Wordsworth Editions Ltd, 1999 (ISBN 1-84022-100-3), p. 29-30
- ↑ (en) Christian Mayer, « An Account of the Transit of Venus: In a Letter to Charles Morton, M. D. Secret. R. S. from Christian Mayer, S. J. Translated from the Latin by James Parsons, M. D. », dans Royal society (GB). Philosophical transactions, 1765, 54, p. 163 [texte intégral]
- ↑ (en) Explanation of the Black-Drop Effect at Transits of Mercury and the Forthcoming Transit of Venus, 2004, AAS. Consulté le 12/06/2007
- ↑ a b c d e (en) Transits of Venus - Kiss of the goddess, 2004, The Economist. Consulté le 12/06/2007
- ↑ (en) Maggie McKee, « Extrasolar planet hunters eye Venus transit », 2004, New Scientist. Consulté le 12/06/2007
- ↑ (en) Fred Espenak, « 2004 and 2012 Transits of Venus », 2002, NASA. Consulté le 12/06/2007
- ↑ (en) Steve Bell, « Transits of Venus 1000 AD – 2700 AD », 2004, HM Nautical Almanac Office. Consulté le 14/06/2007
- ↑ a b (en) "Hobby Q&A", Sky&Telescope, August 2004, p. 138.
- ↑ (en) Fred Espenak, « Transits of Mercury, Seven Century Catalog: 1601 CE to 2300 CE », 2005, NASA. Consulté le 18/06/2007
- ↑ (en) de La Lande; Messier, « Observations of the Transit of Venus on June 3, 1769, and the Eclipse of the Sun on the Following Day, Made at Paris, and Other Places. : Extracted from Letters Addressed from M. De la Lande, of the Royal Academy of Sciences at Paris, and F. R. S. to the Astronomer Royal; And from a Letter Addressed from M. Messier to Mr. Magalhaens », dans Philosophical Transactions (1683-1775), 1769, 59, p. 374-377 [résumé]
- ↑ (en) Fred Espenak, « Eye Safety During Solar Eclipses (Adapted from NASA RP 1383 Total Solar Eclipse of 1998 February 26, April 1996, p. 17.) ». Consulté le 18/06/2007
[modifier] Liens externes
Transits astronomiques dans le système solaire | ||||||
---|---|---|---|---|---|---|
Vénus | Terre | Mars | Jupiter | Saturne | Uranus | Neptune |
Mercure | Mercure | Mercure | Mercure | Mercure | Mercure | Mercure |
Vénus | Vénus | Vénus | Vénus | Vénus | Vénus | |
Terre | Terre | Terre | Terre | Terre | ||
Déimos | Mars | Mars | Mars | Mars | ||
Phobos | Jupiter | Jupiter | Jupiter | |||
Saturne | Saturne | |||||
Uranus |