See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Équation différentielle de Bernoulli - Wikipédia

Équation différentielle de Bernoulli

Un article de Wikipédia, l'encyclopédie libre.

L'équation différentielle de Bernoulli est une équation différentielle du premier ordre de la forme :

 y'(x) + a(x)y(x)= b(x)y(x)^m \; avec m différent de 0 et 1.

a,b:I \rightarrow \mathbb{R} et I est un intervalle ouvert. En général m est un entier naturel, mais on peut prendre m réel à condition de prendre y strictement positif. En général, a et b sont des fonctions continues.

Cette équation a été proposée à la résolution par Jacques Bernoulli en 1695 et résolue un an plus tard par Leibniz par changement de variable se ramenant à une équation différentielle linéaire. C'est la méthode encore employée aujourd'hui pour résoudre cette équation.

En supposant y strictement positif sur l'intervalle I, on peut diviser l'équation par ym(x) et on obtient

 \frac{y'(x)}{y^m(x)} + a(x)\frac{1}{y^{m-1}} = b(x)

En posant

 u(x) = \frac{1}{y^{m-1}(x)}

on obtient l'équation différentielle linéaire

\frac{1}{1-m}u'(x) + a(x)u(x) = b(x)

dont la solution générale est

 u(x) = e^{-(1-m)\int a(t)dt)}\left(C + (1-m)\int b(t)e^{(1-m)\int a(s)ds}dt\right)

ce qui donne pour la fonction y = u^{1\over 1-m}

 y(x) = e^{- \int a(t)dt)}\left(C + (1-m)\int b(t)e^{(1-m)\int a(s)ds}dt\right)^{1 \over 1-m}

Si la fonction y passe par le point (x_0,y_0)\; alors la solution de cette équation est :

y(x)= y_0 e^{-\int_{x_0}^{x} a(t)\, dt} 	\left(1+(1-m)y_0^{m-1} \int_{x_0}^{x} b(t)\left(e^{-\int_{x_0}^{t} a(s)\, ds}\right)^{m-1} \, dt\right)^{\frac{1}{1-m}}

Des solutions peuvent être cherchées dans des fonctions non nécessairement positives, mais alors de nombreuses précautions sont à prendre quant aux domaines de validité.

[modifier] Sources


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -